风乌
上海人工智能实验室协同中国科学技术大学等研发的全球中期天气预报大模型
风乌是上海人工智能实验室协同中国科学技术大学、上海交通大学、南京信息工程大学、中国科学院大气物理研究所及上海中心气象台研发的全球中期天气预报大模型。
发布历程
2023年4月7日,全球中期天气预报大模型“风乌”发布。
2024年3月1日,从上海人工智能实验室获悉,该实验室联合国家气象中心、国家气象信息中心、南京信息工程大学、香港科技大学等机构发布了人工智能气象预报大模型“风乌”的升级版,借助人工智能对中期天气进行了10公里级的建模与预报。
模型简介
该模型基于多模态和多任务深度学习方法构建,首次实现在高分辨率上对核心大气变量进行超过10天的有效预报,并在80%的评估指标上超越DeepMind发布的模型GraphCast。此外,“风乌”仅需30秒即可生成未来10天全球高精度预报结果,在效率上大幅优于传统模型。
“风乌”提供了一个强大有效的全球中期天气预报的AI框架,其领先性体现在预报精度、预报时效和资源效率三方面。
在预报精度方面,相比DeepMind的GraphCast,“风乌”的10天预报误差降低10.87%,而相比于传统的物理模型,其误差降低19.4%。
在预报时效方面,根据国际常用的标准,z500 ACC大于0.6时气象预报结果具有可用性,可以较好地指导预报员判断未来气象发展形势。此前,全球范围内最好的物理模型HRES在此标准范围内,有效预报时长最大为8.5天,而“风乌”基于再分析数据达到了10.75天。
在资源效率方面,现有物理模型往往运行在超级计算机上,而“风乌”AI大模型仅需单GPU便可运行,仅需30秒即可生成未来10天全球高精度预报结果。
“风乌”采用多模态神经网络和多任务自动均衡权重解决多种大气变量表征和相互影响的问题。其针对的大气变量包括:位势、湿度、纬向风速、经向风速、温度以及地表等。“风乌”将这些大气变量看作多模态信息,使用多模态网络结构可以更好地处理这些信息。
最新修订时间:2024-03-05 20:59
目录
概述
发布历程
模型简介
参考资料