鞅过程指的是根据所得的信息对未来某个资产价格的最好预期就是资产的当前价格。在新的概率分布条件下,所有资产价格经过无风险利率贴现之后,为一个鞅过程。
鞅(Martingale)
鞅是关于金融资产价格的最古老的模型,它起源于赌博业和概率论,若价格随机过程{P(t+1)}满足下述条件:.
E(P(t+1)∣P(t),P(t-1),……)=P(t)也即是E(P(t+1)-P(t)∣P(t),P(t-1),……)=0
则我们称价格随机过程{P(t) }为鞅。
鞅过程是一类特殊的随机过程。起源于对公平赌博过程的数学描述。鞅为满足如下条件的随机过程:在已知过程在时刻s之前的变化规律的条件下 ,过程在将来某一时刻t的期望值等于过程在时刻s的值。例如 ,用Z(t)表示某一赌徒在公平赌博中t时刻所拥有的本金 ,那么Z={Z(t),t>0}为鞅,也就是说无论该赌徒在s时刻以后的赌博中如何利用他在s时刻之前所取得的经验 ,他所能期望在将来t时刻拥有的本金只能是Z(s),这正是“公平性”的体现。P.莱维早在1935年就发表了一些孕育着鞅论的工作。1939年,莱维首次采用了鞅这个名称。但对鞅系统地进行研究并使它成为随机过程的一个重要分支的,则应归功于J.L.杜布。鞅已成为研究随机过程的一个有力工具。