非监督分类
以不同影像地物在特征空间中类别特征的差别为依据的一种无先验(已知)类别标准的图像分类
非监督分类是以不同影像地物在特征空间中类别特征的差别为依据的一种无先验(已知)类别标准的图像分类,是以集群为理论基础,通过计算机对图像进行集聚统计分析的方法。根据待分类样本特征参数的统计特征,建立决策规则来进行分类。而不需事先知道类别特征。把各样本的空间分布按其相似性分割或合并成一群集,每一群集代表的地物类别,需经实地调查或与已知类型的地物加以比较才能确定。是模式识别的一种方法。一般算法有:回归分析、趋势分析、等混合距离法、集群分析、主成分分析和图形识别等。
定义
非监督分类是指人们事先对分类过程不施加任何的先验知识,而仅凭数据(遥感影像地物的光谱特征的分布规律),即自然聚类的特性,进行“盲目”的分类;其分类的结果只是对不同类别达到了区分,但并不能确定类别的属性,亦即:非监督分类只能把样本区分为若干类别,而不能给出样本的描述;其类别的属性是通过分类结束后目视判读或实地调查确定的。非监督分类也称聚类分析。一般的聚类算法是先选择若干个模式点作为聚类的中心。每一中心代表一个类别,按照某种相似性度量方法(如最小距离方法)将各模式归于各聚类中心所代表的类别,形成初始分类。然后由聚类准则判断初始分类是否合理,如果不合理就修改分类,如此反复迭代运算,直到合理为止。与监督法的先学习后分类不同,非监督法是边学习边分类,通过学习找到相同的类别,然后将该类与其它类区分开,但是非监督法与监督法都是以图像的灰度为基础。通过统计计算一些特征参数,如均值协方差等进行分类的。所以也有一些共性。
与监督分类的区别
有监督必须有训练集与测试样本。在训练集中找规律,而对测试样本使用这种规律;非监督没有训练集,只有一组数据,在该组数据集内寻找规律。
有监督方法的目的是识别事物,识别的结果表现在给待识别数据加上了标号。因此训练样本集必须由带标号样本组成;非监督方法只有分析数据集本身,无标号。如果发现数据集呈现某种聚集性,则可按自然的聚集性分类,但不以与某种预先的分类标号为目的。
分类方法
(一)波普图形识别分类
(二)聚类分析
动态聚类。聚类的方法主要有基于最邻近规则的试探法、K-means均值算法、迭代自组织的数据分析法(ISODATA)等。
模糊聚类法。模糊分类根据是否需要先验知识也可以分为监督分类和非监督分类.。
系统聚类。这种方法是将影像中每个像元各自看作一类,计算各类间均值的相关系数矩阵,从中选择最相关的两类进行合并形成新类,并重新计算各新类间的相关系数矩阵,再将最相关的两类合并,这样继续下去,按照逐步结合的方法进行类与类之间的合并,直到各个新类间的相关系数小于某个给定的阈值为止。
分裂法。又称等混合距离分类法,它与系统聚类的方法相反,在开始时将所有像元看成一类,求出各变量的均值和均方差,按照一定公式计算分裂后两类的中心,再算出各像元到这两类中心的聚类,将像元归并到距离最近的那一类去,形成两个新类. 然后再对各个新类进行分类,只要有一个波段的均方差大于规定的阈值,新类就要分裂。
聚类中心的选取
它首先要确定基准类别的参量,再由集群的参数来调整预制的参量,再聚类调整,直到有关参数达到允许的范围。其中,初始聚类中心的确定是一个重要的问题,对分类过程和分类结果均有重要影响,较好的初始聚类中心方法既能提高分类的效率又能提高分类的精度。现有的确定初始聚类中心的方法主要有以下几种:任意的选取K个样本作为初始聚类中心;凭经验选取有代表性的点作为初始聚类中心;用密度法选取代表点作为初始聚类中心;最大最小距离选心法;基于均值标准差定心法。
最新修订时间:2022-11-28 13:44
目录
概述
定义
参考资料