集中趋势
数据的中心位置
集中趋势又称“数据的中心位置”、“集中量数”等。它是一组数据的代表值。集中趋势的概念就是平均数的概念,它能够对总体的某一特征具有代表性,表明所研究的舆论现象在一定时间、空间条件下的共同性质和一般水平。就变量数列而言,由于整个变量数列是以平均数为中心而上下波动的,所以平均数反映了总体分布的集中趋势,它是表明总体分布的一个重要特征值。根据变量数列的平均数,就可以了解所研究总体的集中趋势和一般特征。集中趋势是用来描述舆论现象的重要统计分析指标,常用的有平均数、中位数和众数等,它们在不同类型的分布数列中有不同的测定方法。
定义
在统计学中,集中趋势(central tendency)或中央趋势,在口语上也经常被称为平均,表示一个机率分布的中间值。最常见的几种集中趋势包括算数平均数、中位数众数。集中趋势可以由有限的数组(如一群样本)中或理论上的机率分配(如正态分布)中求得。有些人使用集中趋势(或集中性)这个词汇以表示“数量化的资料之中央值的趋势”。在这种意义下,我们可以利用资料的离散程度(例如标准偏差四分差等相似的统计量)判别其集中趋势的程度。
集中趋势(central tendency)一词于1920年代后期出现。
测定方法
取得集中趋势代表值的方法有两种:数值平均数位置平均数
数值平均数
从总体各单位变量值中抽象出具有一般水平的量,这个量不是各个单位的具体变量值,但又要反映总体各单位的一般水平,这种平均数称为数值平均数。数值平均数有算术平均数调和平均数几何平均数等形式。
算术平均数:算术平均数就是观察值的总和除以观察值个数的商,是集中趋势测定中最重要的一种,它是所有平均数中应用最广泛的平均数。算术平均数分为简单算术平均数加权算术平均数
算术平均数总体标志总量(变量值总量)/总体单位总量(变量值个数)
调和平均数:调和平均数可以看成是变量χ的倒数的算术平均数的倒数,故有时也被称为“倒数平均数”。调和平均数分为简单调和平均数和加权调和平均数
简单调和平均数计算:
几何平均数:几何平均数也称几何均值,是n个变量值乘积的n次方根。根据统计资料的不同,几何平均数也有简单几何平均数加权几何平均数之分。
简单几何平均数的计算:
位置平均数
位置平均数就是根据总体中处于特殊位置上的个别单位或部分单位的标志值来确定的代表值,它对于整个总体来说,具有非常直观的代表性,因此,常用来反映分布的集中趋势。常用的有众数、中位数。
众数——是总体中出现次数最多的变量值,在实际工作中有时有它的特殊用途。
中位数——将数据按大小顺序排列起来,形成一个数列,居于数列中间位置的那个数据就是中位数。
关系
在指数分配exp(λ)中,期望值为1/λ而中位数为(ln 2)/λ,二者并不一致。
在左右对称的机率分布中,不同的集中趋势统计量有相同结果,但在偏度远离0时则可能不一致。在单峰型的机率分布(unimodal probability distribution)中,平均数(μ)、中位数(ν)与众数(θ)的关系如下:
其中σ为标准偏差。至于任一机率分布,
参考资料
最新修订时间:2024-06-19 18:06
目录
概述
定义
测定方法
数值平均数
参考资料