阿列夫零
数学名词
集合论这一数学分支里,阿列夫数,又称艾礼富数,阿列夫数是一连串超穷基数。其标记符号为 ℵ (由希伯来字母 ‎א‎ ‎演变而来)加角标表示可数集(包括自然数)的势标记为ℵ0 ,下一个较大的势为ℵ1 ,再下一个是ℵ2,以此类推。一直继续下来,便可以对任一序数 α 定义一个基数。
定义
这一概念来自于格奥尔格·康托尔,他定义了势,并认识到无限集合是可以有不同的势的。
阿列夫数与一般在代数微积分中出现的无限(∞) 不同。
阿列夫(aleph),是希伯来文字母表的第一个字母。
阿列夫数与一般在代数与微积分中出现的无限(∞) 不同。阿列夫数用来衡量集合的大小,而无限只是定义成实数线上的最大的极限或扩展的实轴上的端点。某些阿列夫数会大于另一些阿列夫数,而无限只是无限而已。
构造性定义
阿列夫数的直观定义并没有解释什么叫“下一个较大的势”,也没有证明是否存在“下一个较大的势”。即便承认对任意的基数都存在更大的基数,是否存在“下一个较大的势”使得这个基数和“下一个较大的基数”之间不再有其他的基数仍然是个问题。下面的构造型定义解决这个问题:
设ℵa已定义且是一良序集的基数,考虑:
阿列夫1
ℵ1是所有可数序数集合的,称为ω1或有时为Ω。这个ω1本身是一个比所有可数序数更大的序数,因此它为一个不可数集
如何理解阿列夫零
在了解阿列夫零前,先看一个关于无穷大悖论的故事
基塔:““无穷饭店”是我们银河系中心的一家巨大的旅馆。它拥有无穷多个房间,这些房间通过黑洞伸展到更高级的时空领域。房间号从1开始,无限制地排下去。 一天,这个旅店的客房全住进了客人,这时候来了一位飞碟不明飞行物)的驾驶员,他正要去别的星系。 尽管已经没有空房间了,可是旅店老板仍然给驾驶员找到了一个房间。他不过是把原来住在各个房间里的房客都一一移到高一号的房间。于是左边第1号房间就空出来给该驾驶员住。 第二天又来了五对夫妇渡蜜月。无穷饭店能不能接待他们,老板只不过把每个客人都一一移到高5号的房间中去,空出的1到5号房就给这5对夫妇 。周末,又有无穷多个泡泡糖推销员来到这家旅馆开会。 ”
赫尔曼:“我能够理解无穷饭店可以怎样接待有限数量的新到者,可是它怎么能够再给无穷多旅客找到新房间呢? ”
基塔:“很容易,我亲爱的赫尔曼。老板只要把每个房间里的客人移到原来号码两倍的房间中去就行了。 ”
赫尔曼:“对了!这下每个房间里的人都住到双号房中,余下的所有单号房间有无穷多个,它们空出来给泡泡糖商人住!”
关于无穷大还有很多悖论。计数用的数是无穷大等级中最低一级的无穷数。在整个宇宙中的点数是第二级无穷大数,第三级无穷大数比这要多得多!
德国数学家乔治·康托发现了无穷大的这种等级,他把这种新型的奇异等级称为阿列夫零、阿列夫1、阿列夫2等等。关于阿列夫数有很多深刻的神秘性,解决它们是现代数学中最激动人心的挑战之一。
如我们所知,任何一个有限集都不能与它的一个真子集建立一一对应的关系。对于无穷集这—点就不成立了。看上去这样就违反了整体大于局部这一古老法则。确实,一个无穷集可以定义为能够与它的一个真子集一一对应的集。
无穷饭店的老板首先表明了由一切计数用的数所组成的集合(这是乔治·康托称为阿列夫零的集合)可以与它的某一个真子集一一对应,并余下一个元素,或者五个元素。显然,这一程序可以变化,使得从一个阿列夫零集中减去它的一个子集,这个子集也是阿列夫零集,从其余下的数中就会得到所要的任何有限个数量的元素
还有一个办法可以使这一减法形象化,想象有两根无限长的测量棒并排放在桌子上,把两棍棒的零端对齐放在桌子中心。两根棒都刻了线,按厘米计数。两根棒在右端延伸到无穷远,所有数都一一对应:0—0、1—1、2—2等等。想象把一根棒向右移动n厘米。移动以后,那棍棒上的所有数仍与不动的棒上的数一一对应。如果那根棒移动了3厘米,则棒上教的对应就是0—3、1—4、2—5、……。移动的n厘米代表两棍棒长之差。不过,两根棒的长度仍然是阿列夫零厘米长。由于我们可以让二者之差n为我们所要的任何一个值,很明显用阿列夫零减阿列夫零就是一个不确定的运算。
饭店老板最后施的策略就是打开无穷多个房间。这表明如何用阿列夫零减阿列夫零得到阿列夫零。让每一个数与每一个偶数一一对应,则余下的是一个由全部奇数所构成的阿列夫零集。
实数所构成的集合形成更高一级的无穷集,康托称之为阿列夫1。康托的辉煌成就之一就是著名的“对角论证法”,它说的是阿列夫1的元素不可能与阿列夫0的元素构成一一对应关系。阿列夫1也就是在一条线段上全部点的数目。康托证明了这些点怎样能与一条无限直线上的点一一对应,怎样与一方块上的点、与一无限大平面上的点;与一立方体中的点、与无限大空间中的点一一对应,如此下去还可以与超立方体或更高维空间中的点一一对应。阿列夫1又称为“连续统的势”。
阿列夫2是一切可能的数学函数——连续函数和不连续函数的数目。因为任何一个函数都可画为一曲线,我们把“曲线”取广义以包括不连续曲线,则阿列夫2就是一切可能的曲线数目。同样,如果我们所指的曲线是在一张邮票上,或者在一个无穷空间里,或者在一个无穷超空间里的全部曲线,这一切都没有问题,仍是阿列夫2。康托还证明了阿列夫2不可能与阿列夫1一一对应。
当一个阿列夫数被升级为它本身的幂,则产生一个更高级的阿列夫数,它不能与产生它的阿列夫数一一对应。因此,阿列夫数的阶梯向上是无穷的。
在阿列夫数之间有没有什么超限数?比如说,有没有一个数比阿列夫零大、比阿列夫1小?康托确信不存在这种数。他的猜测成为著名的广义连续统假设
1938年,哥德尔证明标准集合论与不存在中介的超限数假设是一致的。1963年,保罗·科恩证明,如果人们假定存在中介数,这也不与集合论矛盾。简言之,连续统假设是由表明它是“不可判定的”来判定的。
科恩的研究结果是:集合论分为康托型和非康托型的。康托型集合论是假设在阿列夫数之间没有中介数。非康托型集合论是假定有无限多个中介数。情况类似于几何学中,发现平行线假设不能被证明后,几何学分成了欧氏几何和非欧几何一样。
希望学习更多关于这些神秘的超限数知识的学生可以阅读爱德华·卡斯纳和詹姆斯·纽曼著的《数学与想象力》第二章“古格尔之后”和《科学美国人》1966年三月号数学游戏部分。
参考资料
最新修订时间:2024-01-16 16:59
目录
概述
定义
构造性定义
参考资料