化学元素
元素符号Er,原子序数68,在化学元素周期表中位于第6周期、镧系(IIIB族)11号,原子量167.26,元素名来源于钇土的发现地。 铒1843年瑞典科学家莫桑德尔用分级沉淀法从钇土中发现铒的氧化物,1860年正式命名。铒在地壳中的含量为0.000247%,存在于许多稀土矿中。有六种天然同位素:铒162、164、166、167、168、170。
研究简史
发现人:莫桑德尔(C.G.Mosander)
发现年代:1843年
发现过程:1843年,由莫桑德尔(C.G.Mosander)发现。他原来将铒的氧化物命名为氧化铽,因此,早期德文献中,氧化铽和氧化铒是混同的。直到1860年以后,才得纠正。
在发现镧的同一时期里,莫桑德尔对最初发现的进行了分析研究,并于1842年发表报告,明确最初发现的钇土不是单一的元素氧化物,而是三种元素的氧化物。他把其中的一种仍称为钇土,其中一种命名为erbia(铒土)。元素符号定为Er。它的命名来源和钇一样,出自最初发现钇矿石的产地,瑞典斯德哥尔摩附近的小镇乙特比(Ytterby)。铒和另两个元素、铽的发现打开了发现稀土元素的第二道大门,是发现稀土元素的第二阶段。他们的发现是继铈和钇两个元素后又找到稀土元素中的三个。
矿藏分布
存在于火成岩中,可由电解熔融氯化铒(III)ErCl3而制得,与其他密度较大的稀土元素共存于磷钇矿黑稀金矿中。
离子型稀土矿:中国江西、广东、福建、湖南、广西等。
磷钇矿:马来西亚、中国广西、广东
独居石:澳大利亚海岸海滨、印度海滨中国广东和台湾海滨。
理化性质
铒为银白色金属;熔点1529°C,沸点2868°C,密度9.062g/cm3;铒在低温下是反磁性的,在接近绝对零度时为强铁磁性,并为超导体
铒在室温下缓慢被空气和水氧化,氧化铒为玫瑰红色。与其他镧系元素类似,铒的价态为正三价,基态Er0的电子排布为4f126s2;Er+为4f126s1;Er2+为4f12;Er3+为4f11。
铒可用作反应堆控制材料;铒也可作某些荧光材料的激活剂。第一电离能6.10电子伏特。与钬、镝的化学性质和物理性质几乎完全相同。
铒为银白色金属,质软,不溶于水,溶于酸。盐类和氧化物呈粉红至红色。铒的同位素有:162Er、164Er、166Er、167Er、168Er、170Er。
元素名称:铒
英文名:Erbium
元素原子量:167.3
体积弹性模量Gpa:44.4
原子化焓:kJ /mol @25℃:314
热容:J /(mol·K):28.12
导电性:106/(cm·Ω):0.0117
导热系数:W/(m·K):14.5
熔化热:(千焦/摩尔):19.90
汽化热:(千焦/摩尔):261.0
原子体积:(立方厘米/摩尔):18.4
铒激光器头
氧化态:Main Er+3
Other
元素在宇宙中的含量:(ppm):0.002
元素在太阳中的含量:(ppm):0.001
元素在海水中的含量:(ppm):大西洋表面 0.00000059
大西洋深处 0.00000086
地壳中含量:(ppm):3.8
晶体结构晶胞为六方晶胞。
a = 355.88 pm;b = 355.88 pm;c = 558.74 pm;α = 90°;β = 90°;γ = 120°
维氏硬度:589MPa
声音在其中的传播速率:(m/S) 2830
电离能 (kJ /mol)
M—M+ 588.7;M+—M2+ 1151;M2+—M3+ 2194;M3+—M4+ 4115
元素类型:金属
元素符号:Er
英文名:Erbium
中文名:铒
常见化合价:+3
电负性:1.24
外围电子排布:4f12 6s2
核外电子排布:2,8,18,30,8,2
电子层:K-L-M-N-O-P
同位素及放射线:Er-162、Er-164、*Er-166、Er-167、Er-168、Er-169[9.4d]、Er-170、Er-171[7.5h]、Er-172[2.1d]
电子亲合能:0 KJ·mol-1
第一电离能:589 KJ·mol-1
第二电离能:1151 KJ·mol-1
第三电离能:0 KJ·mol-1
单质密度:8.795 g/cm3
单质熔点:1522.0 ℃
单质沸点:2510.0 ℃
原子半径:2.45埃
离子半径:1.00(+3)埃
共价半径:1.57埃
制备方法
以金属钙还原无水氟化物可制得金属铒。
氟化铒的钙热还原法。冶炼设备为真空感应炉,该设备要能调节控制炉温高达1800℃,控温精度±10℃,炉体真空可达10-5Pa。还原剂金属钙用钙粒或钙屑,都应是重蒸馏过的,其氧、氮等杂质含量要低。氟化物钙热直接还原使用能耐氟化物腐蚀并不与稀土金属作用的坩埚,由厚度为0.3~0.4mm钽片氩弧焊接而成。还原的保护气氛使用氩气。将过量10%~15%的金属钙屑或钙粒与氟化铒混匀,装在钽坩埚中压实,盖好盖子,然后放入真空感应炉中开始抽真空至10-2Pa后,缓慢加热至400~600℃。在深脱气后充入净化的氩气至6×104Pa,继续升温至800~1000℃,炉料开始明显地发生还原反应。然后将温度升至1500℃并保持10~15min,使金属与渣熔化和彼此充分分层分离,从而获得致密的金属锭。氟化物钙热还原法只能得到工业纯的铒金属。一般铒金属的纯度为95%~98%。为了提高还原产品的纯度,需要使用经干法氟化法制备的较纯的氟化铒(含氧、氮、过渡金属特别是铁少)。还原剂钙使用前需要于799.93Pa的氦分压下蒸馏提纯,并把提纯过的钙保存在充氦的密封干燥箱内,以避免氧化及吸收空气中水分。还原产品中钙含量一般为0.2%~0.5%,坩埚杂质钽含量约为0.1%~0.5%。
应用领域
它的氧化物Er2O3为玫瑰红色,用来制造陶器的釉彩。陶瓷业中使用氧化铒产生一种粉红色的釉质。铒在核工业中也有一些应用,还能作为其他金属的合金成分。例如钒中掺入铒能够增强其延展性
铒最突出的用途是制造掺铒光纤放大器(Erbium Dopant Fiber Amplifier,简称EDFA)。掺铒光纤放大器(EDFA)是1985年英国南安普顿大学首先研制成功的,它是光纤通信中最伟大的发明之一,甚至可以说是当今长距离信息高速公路的“加油站”。掺铒光纤是在石英光纤中掺入少量稀土元素铒离子(Er3+),它是放大器的核心。掺铒光纤放大光信号的原理是:当Er3+受到波长980nm或1480nm的光激发吸收泵浦光的能量后,由基态跃迁到高能级的泵浦态。由于粒子在泵浦态的寿命很短,很快以非辐射的方式由泵浦态驰豫到亚稳态,粒子在该能带有较长的寿命,逐渐积累。当有1550nm信号光通过时,亚稳态的Er3+离子以受激辐射的方式跃迁到基态,也正好发射出1550nm波长的光。这种从高能态跃迂至基态时发射的光补充了衰减损失的信号光,从而实现了信号光在光纤传播过程中随着衰减又不间断地被放大。
将铒掺入普通石英光纤,再配以980纳米或1480纳米两种波长的半导体激光器,就基本构成了直接放大1550nm光信号的放大器。石英光纤可传送各种不同波长的光,但光衰率不一样,1550nm频带的光在石英光纤中传输时光衰减率最低(仅为0.15分贝/公里),衰减率几乎是下限极限。因此,光纤通信以1550nm波长的光作信号光时,光的损失最小。所以,光纤中只要掺杂几十至几百ppm的铒,就能够起到补偿通讯系统中光损耗的作用。掺铒光纤放大器就如同一个光的“泵站”,使光信号一站一站毫不减弱地传递下去,从而顺畅地开通了现代长距离大容量高速光纤通讯的技术通道。
铒的另一个应用热点是激光,尤其是用作医用激光材料。铒激光是一种固体脉冲激光,波长为2940nm,能被人体组织中的水分子强烈吸收,从而用较小的能量获得较大的效果,可以非常精确地切割、磨削和切除软组织。铒YAG激光还被用做白内障摘除。因为白内障晶体的主要成分是水,铒激光能量低,易被水吸收,将是一种很有发展前景的摘除白内障的手术方法。铒激光治疗仪正为激光外科开辟出越来越广阔的应用领域。
铒还可用作稀土上转换激光材料的激活离子。铒激光上转换材料又分为单晶(氟化物、含氧盐)和玻璃(光纤)两类,如掺铒的铝酸钇(YAP:Er3+)晶体和掺杂Er3+的ZBLAN氟化物(ZrF4-BaF2-LaF3-AlF3-NaF)玻璃光纤等,均已经实用化。BaYF5:Yb3+,Er3+可将红外线转成可见光,这种多光子上转换发光材料已成功地用于夜视仪。
2022年11月,德国科学家首次将拥有特殊光学特性的铒原子集成到硅晶体内,这些原子可通过通信领域常用的光连接起来,使其成为未来量子网络的理想构建块。
计算化学数据
数据:
1.疏水参数计算参考值(XlogP):无
2.氢键供体数量:0
3.氢键受体数量:0
4.可旋转化学键数量:0
5.互变异构体数量:无
6.拓扑分子极性表面积0
7.重原子数量:1
8.表面电荷:0
9.复杂度:0
10.同位素原子数量:0
11.确定原子立构中心数量:0
12.不确定原子立构中心数量:0
13.确定化学键立构中心数量:0
14.不确定化学键立构中心数量:0
15.共价键单元数量:1
安全信息
信息:
包装等级:III
风险类别:8
WGK_Germany:3
德国有关水污染物质的分类清单
危险类别码:R11
安全说明:S43
危险标志:F:Highlyflammable;
保护措施
2024年6月,公布《稀土管理条例》,自2024年10月1日起施行。
最新修订时间:2025-04-14 21:38
目录
概述
研究简史
参考资料