钇钡铜氧
化学物质
钇钡铜氧是一种无机物,化学式为Y2O3·BaO·CuO,为黑色固体。
历史
在发现超导性后的第75年,在苏黎世IBM工作的约翰内斯·贝德诺尔茨和卡尔·米勒发现特定的半导体氧化物可以在低于35K的温度下显示出超导性,特别是镧钡铜氧化物,一种缺氧钙钛矿型的潜在材料。
在此基础上,1987年,亨茨维尔亚拉巴马大学吴茂昆及其研究生(Ashburn和Torng),与休斯顿大学朱经武和他的学生共同发现了钇钡铜氧,也因此引发了对新高温超导材料的研究热潮。
YBCO是首个超导温度在77K以上的材料,也就是说它的转变温度高于液氮的沸点,用相对便宜的液氮就可以冷却。之前发现的超导体都必须用液氦液氢冷却(Tb= 20.28 K)。
合成
YBCO最早是通过在1000-1300K加热金属碳酸盐混合物制备的。
现在YBCO的制取以相应的硝酸盐和氧化物为原料。
YBa2Cu3O{7-x}的超导性质与x值(氧含量)很有关系,只有满足0≤x≤0.5的材料在Tc温度下有超导性,当x~0时其转变温度最高,为95K。
除了氧的计量比外,YBCO的性质也由结晶方式决定。在烧结YBCO时必须小心,因为YBCO是晶体材料,只有小心控制退火淬火的温度和速度,校准晶界,才可以使其超导性达到最佳。
吴茂昆和同事提出了其他合成YBCO的方法,比如化学气相沉积(CVD)、溶胶-凝胶以及气溶胶法。这些方法在烧结时仍然需要小心。
应用
高温超导体有很多实际中的应用,例如可用作核磁共振成像磁悬浮设施以及约瑟夫森结中的磁体。
主要有两个问题限制了YBCO在超导方面的应用:
另外,很多情况下大规模冷却物体至液氮的温度并不十分实际。
YBCO的表面改性
表面改性常会导致材料的新性质。表面改性的YBCO可衍生出许多性质,如抑制腐蚀、黏合聚合物、成核,制备有机超导体/绝缘体/高温超导体以及制备金属/绝缘体/超导体隧道结。
这些分子层状材料可用循环伏安法制备。已制得烷基胺、芳香胺和硫醇与YBCO形成的材料,它们稳定性不一。有理论认为在这其中胺扮演路易斯碱,与YBa2Cu3O7中路易斯酸性的Cu位点结合生成稳定的配位键。
磁悬浮
YBCO和其他超导体一样,在转变温度会发生迈斯纳效应。在该温度或低于该温度时,YBCO变为抗磁性,内部磁通量为零,磁力线无法进入超导体,超导体排斥体内的磁场。
参考资料
钇钡铜氧化物.ChemicalBook.
最新修订时间:2023-08-17 15:08
目录
概述
历史
合成
参考资料