跟踪误差是指在
定位运动或者
电机运动过程中,从开始运动到实际位置的时间段内的位置命令与实际位置的差值,跟踪误差在各个行业里面有的一定的误差认可范围。
视频跟踪器误差是纯粹的图像处理自身的误差,是以判断图像像元的最小分辨率来定义的。通常跟踪器的误差不大于l/2像素。根据光电系统所采用的
红外热像仪或电视摄像机的视场,可以很方便地估算出对应不同视场时像元数的尺寸大小。
视频跟踪器的噪声是信号处理电路造成的,正常情况下,跟踪器噪声不大于一个像素。同理,可根据光电系统所采用的
光电传感器视场计算出对应不同视场时像元数的尺寸大小,从而得到视频跟踪器噪声造成的跟踪误差。
跟踪控制回路是由视频取差器,通过对目标瞄准点与瞄准线之间取差作为指令输入,经由跟踪控制器、滤波器、放大器、驱动器、电动机等去驱动万向架和光电传感器跟踪目标。并通过光电传感器瞄准线的位置构成闭环回路。该回路伺服性能的好坏,即稳态误差的大小和系统的动态品质等,均和跟踪误差密切相关。
,首先进行基于位置的阻抗控制仿真,而后进行基于力矩的阻抗控制仿真,仿真结果分别如右图图一和图二所示。(a)为位置跟踪误差曲线,实线代表期望轨迹,虚线代表实际运动轨迹;(b)为力跟踪误差曲线。
从仿真结果我们可以看出,模糊CMAC作用力跟踪阻抗控制器能补偿平台动力学上的不确定性,基于位置阻抗控制的性能稍微优于基于力矩阻抗控制。为了进行仿真比较,我们用CMAC代替FCMAC进行仿真,固定y轴,X和z轴运动,期望z轴在x和Z平面上运动轨迹为,刚度为100 N/mm,先进行基于位置的阻抗控制,然后进行基于力矩的阻抗控制,仿真结果如右图图三,图四所示。(a)为位置跟踪误差曲线,实线代表期望轨迹,虚线代表实际运动轨迹;(b)为力跟踪误差曲线。
从仿真结果我们可以看出,FCMAC性能优于CMAC,基于位置阻抗控制的性能稍微优于基于力矩阻抗控制。另外,由于基于位置的阻抗控制方案无需改变内部的控制结构便可使位置控制平台系统实现鲁棒性作用力控制。