赤霉素(gibberellins,GAs)是一类非常重要的植物激素,参与许多植物生长发育等多个生物学过程。赤霉素用A1(GA1)到A126(GA126)的方式命名,数字依照发现的先后顺序。
历史
1926年日本黑泽英
一发现,当水稻感染了
赤霉菌赤霉酸。1956年C.A.韦斯特和B.O.菲尼分别证明在高等植物中普遍存在着一些类似赤霉酸的物质。到1983年已分离和鉴定出60多种。一般分为自由态及结合态两类,统称赤霉素,分别被命名为GA1,GA2等。
结构
赤霉素都含有赤霉素烷骨架,它的化学结构比较复杂,是双萜化合物。在高等植物中赤霉素的前体一般认为是
贝壳杉烯。赤霉素的基本结构是赤霉素烷,有4个环。在赤霉素烷上,由于双键、羟基数目和位置不同,形成了各种赤霉素。自由态赤霉素是具19C或20C的一、二或三羧酸。结合态赤霉素多为萄糖苷或葡糖基酯,易溶于水。
分布
广泛分布于被子、裸子、蕨类植物、褐藻、绿藻、真菌和细菌中,多存在于生长旺盛部分,如茎端、嫩叶、根尖和果实种子。含量:1~1000ng鲜重,果实和种子(尤其是未成熟种子) 的赤霉素含量比营养器官的多两个数量级。每个器官或组织都含有两种以上的赤霉素,而且赤霉素的种类、数量和状态 (自由态或结合态)都因植物发育时期而异。GA与
生长素不同,其运输不表现极性。不同植物间的运输速度差别很大。
分类
自由型
不以键的形式与其他物质结合,易被有机溶剂提取出来,具有生理活性。
结合型
和其他物质(如葡萄糖)结合,要通过酸水解或蛋白酶分解才能释放出自由赤霉素,无生理活性。
束缚型
这是GA的一种储藏形式。种子成熟时,GA转化为束缚型贮存,而在种子萌发时,又转变成游离型而发挥其调节作用。
用途
赤霉素适合以下作物:棉花、番茄、马铃薯、果树、稻、麦、大豆、烟草等,促进其生长、发芽、开花结果;能刺激果实生长,提高结实率,对棉花、蔬菜、瓜果、水稻、绿肥等有显著的增产效果。
赤霉素最突出的生理效应是促进茎的伸长和诱导长日植物在短日条件下抽薹开花。各种植物对赤霉素的敏感程度不同。遗传上矮生的植物如矮生的玉米和豌豆对赤霉素最敏感,经赤霉素处理后株型与非矮生的相似;非矮生植物则只有轻微的反应。有些植物遗传上矮生性的原因就是缺乏内源赤霉素(另一些则不然)。赤霉素在种子发芽中起调节作用。许多禾谷类植物例如大麦的种子中的淀粉,在发芽时迅速水解;如果把胚去掉,淀粉就不水解。用赤霉素处理无胚的种子,淀粉就又能水解,证明了赤霉素可以代替胚引起淀粉水解。赤霉素能代替红光促进光敏感植物莴苣种子的发芽和代替胡萝卜开花所需要的春化作用。赤霉素还能引起某些植物单性果实的形成。对某些植物,特别是无籽葡萄品种,在开花时用赤霉素处理,可促进无籽果实的发育。但对某些生理现象有时有抑制作用。
关于赤霉素的作用机理,研究得较深入的是它对去胚大麦种子中淀粉水解的诱发。用赤霉素处理灭菌的去胚大麦种子,发现GA3显著促进其糊粉层中α-淀粉酶的新合成,从而引起淀粉的水解。在完整大麦种子发芽时,胚含有赤霉素,分泌到糊粉层去。此外,GA3还刺激糊粉层细胞合成蛋白酶,促进
核糖核酸酶及
葡聚糖酶的分泌。促进麦芽糖的转化(诱导α—淀粉酶形成);促进营养生长(对根的生长无促进作用,但显著促进茎叶的生长),防止器官脱落和打破休眠等。
赤霉素最突出的作用是加速细胞的伸长(赤霉素可以提高植物体内生长素的含量,而生长素直接调节细胞的伸长),对细胞的分裂也有促进作用,它可以促进细胞的扩大(但不引起细胞壁的酸化),除此之外,赤霉素还有着抑制成熟,侧芽休眠,衰老,块茎形成的生理作用。