贝叶斯网络(Bayesian network),又称信度网络(belief network)或是
有向无环图模型(directed acyclic graphical model),是一种概率图型模型。
简介
贝叶斯网络又称信度网络,是Bayes方法的扩展,是目前不确定知识表达和推理领域最有效的理论模型之一。从1988年由Pearl提出后,已经成为近几年来研究的热点.。一个贝叶斯网络是一个有向无环图(Directed Acyclic Graph,DAG),由代表变量结点及连接这些结点有向边构成。结点代表
随机变量,结点间的有向边代表了结点间的互相关系(由父结点指向其子结点),用
条件概率进行表达关系强度,没有父结点的用
先验概率进行信息表达。结点变量可以是任何问题的抽象,如:测试值,观测现象,意见征询等。适用于表达和分析不确定性和概率性的事件,应用于有条件地依赖多种控制因素的决策,可以从不完全、不精确或不确定的知识或信息中做出推理。
数学定义
令G= (I,E) 表示一个有向无环图(DAG),其中I代表图中所有的结点的集合,而E代表有向连接线段的集合,且令X= (Xi)i∈I为其有向无环图中的某一结点i所代表之随机变量,若结点X的
联合概率分布可以表示成:
则称 X 为相对于一有向无环图G的贝叶斯网络,其中表示结点i之“因”。
对任意的随机变量,其联合分布可由各自的局部条件概率分布相乘而得出:
依照上式,我们可以将一贝叶斯网络的联合概率分布写成:
(对每个相对于Xi的“因”变量 Xj而言)
上面两个表示式之差别在于条件概率的部分,在贝叶斯网络中,若已知其“因”变量下,某些结点会与其“因”变量条件独立,只有与“因”变量有关的结点才会有条件概率的存在。
如果联合分布的相依数目很稀少时,使用贝氏函数的方法可以节省相当大的存储器容量。举例而言,若想将10个变量其值皆为0或1存储成一条件概率表型式,一个直观的想法可知我们总共必须要计算个值;但若这10个变量中无任何变量之相关“因”变量是超过三个以上的话,则贝叶斯网络的条件概率表最多只需计算个值即可。另一个贝式网上优点在于:对人类而言,它更能轻易地得知各变量间是否条件独立或相依与其局部分布(local distribution)的类型来求得所有随机变量之联合分布。
求解方法
以上例子是一个很简单的贝叶斯网络模型,但是如果当模型很复杂时,这时使用枚举式的方法来求解概率就会变得非常复杂且难以计算,因此必须使用其他的替代方法。一般来说,贝氏概率有以下几种求法:
精确推理
·
枚举推理法(如上述例子)
·
·
变量消元算法(variable elimination)
·
随机推理(蒙特卡洛方法)
·
直接取样算法
·
·
拒绝取样算法
·
·
概似加权算法
·
·
马尔可夫链蒙特卡洛算法(Markov chain Monte Carlo algorithm)
·
在此,以马尔可夫链蒙特卡洛算法为例,又马尔可夫链蒙特卡洛算法的类型很多,故在这里只说明其中一种吉布斯采样的操作步骤: 首先将已给定数值的变量固定,然后将未给定数值的其他变量随意给定一个初始值,接着进入以下迭代步骤:
(1)随意挑选其中一个未给定数值的变量
(2)从条件分布抽样出新的的值,接着重新计算
当迭代结丛后,删除前面若干笔尚未稳定的数值,就可以求出的近似条件概率分布。马尔可夫链蒙特卡洛算法的优点是在计算很大的网上时效率很好,但缺点是所抽取出的样本并不具独立性。
当贝叶斯网络上的结构跟参数皆已知时,我们可以透过以上方法来求得特定情况的概率,不过,如果当网上的结构或参数未知时,我们必须借由所观测到的数据去推估网上的结构或参数,一般而言,推估网上的结构会比推估结点上的参数来的困难。依照对贝叶斯网络结构的了解和观测值的完整与否,我们可以分成下列四种情形:
特性
1、贝叶斯网络本身是一种不定性因果关联模型。贝叶斯网络与其他
决策模型不同,它本身是将多元知识图解可视化的一种概率知识表达与推理模型,更为贴切地蕴含了
网络结点变量之间的因果关系及条件相关关系。
2、贝叶斯网络具有强大的不确定性问题处理能力。贝叶斯网络用
条件概率表达各个信息要素之间的相关关系,能在有限的、不完整的、不确定的信息条件下进行学习和推理。
3、贝叶斯网络能有效地进行多源信息表达与融合。贝叶斯网络可将
故障诊断与维修决策相关的各种信息纳入网络结构中,按结点的方式统一进行处理,能有效地按信息的相关关系进行融合。
对于贝叶斯网络推理研究中提出了多种近似推理算法,主要分为两大类:基于
仿真方法和基于搜索的方法。在故障诊断领域里就我们水电仿真而言,往往故障概率很小,所以一般采用搜索推理算法较适合。就一个实例而言,首先要分析使用哪种算法模型:
a.)如果该实例结点信度网络是简单的
有向图结构,它的结点数目少的情况下,采用贝叶斯网络的精确推理,它包含多树传播算法,团树传播算法,图约减算法,针对实例事件进行选择恰当的算法;
b.)如果是该实例所画出结点图形结构复杂且结点数目多,我们可采用近似推理算法去研究,具体实施起来最好能把复杂庞大的网络进行
化简,然后在与精确推理相结合来考虑。
在日常生活中,人们往往进行常识推理,而这种推理通常是不准确的。例如,你看见一个头发潮湿的人走进来,你认为外面下雨了,那你也许错了;如果你在公园里看到一男一女带着一个小孩,你认为他们是一家人,你可能也犯了错误。在工程中,我们也同样需要进行科学合理的推理。但是,工程实际中的问题一般都比较复杂,而且存在着许多不确定性因素。这就给准确推理带来了很大的困难。很早以前,不确定性推理就是人工智能的一个重要研究领域。尽管许多人工智能领域的研究人员引入其它非概率原理,但是他们也认为在常识推理的基础上构建和使用概率方法也是可能的。为了提高推理的准确性,人们引入了概率理论。最早由Judea Pearl于1988年提出的贝叶斯网络(Bayesian Network)实质上就是一种基于
概率的不确定性推理网络。它是用来表示变量集合连接概率的图形模型,提供了一种表示因果信息的方法。当时主要用于处理人工智能中的不确定性信息。随后它逐步成为了处理不确定性信息技术的主流,并且在计算机智能科学、工业控制、医疗诊断等领域的许多智能化系统中得到了重要的应用。
贝叶斯理论是处理不确定性信息的重要工具。作为一种基于概率的不确定性推理方法,贝叶斯网络在处理不确定信息的智能化系统中已得到了重要的应用,已成功地用于医疗诊断、统计决策、
专家系统、学习预测等领域。这些成功的应用,充分体现了贝叶斯网络技术是一种强有力的不确定性推理方法。
贝叶斯网络的应用层面
贝叶斯网络目前应用在模拟
计算生物学(computational biology)与生物信息学(bioinformatics)基因调控网上(gene regulatory networks)、蛋白质结构(protein structure)、基因表达分析(gene expression analysis)、医学(medicine)、文件分类(document classification)、信息检索(information retrieval)、决策支持系统(decision support systems)、工程学(engineering)、游戏与法律(gaming and law)、数据结合(data fusion)、图像处理(image processing)等。