计数排序是一个非基于比较的
排序算法,该算法于1954年由 Harold H. Seward 提出。它的优势在于在对一定范围内的整数排序时,它的
复杂度为Ο(n+k)(其中k是整数的范围),快于任何比较排序算法。 当然这是一种牺牲空间换取时间的做法,而且当O(k)>O(n*log(n))的时候其效率反而不如基于比较的排序(基于比较的排序的
时间复杂度在理论上的下限是O(n*log(n)), 如
归并排序,
堆排序)
计数排序的基本思想是对于给定的输入序列中的每一个元素x,确定该序列中值小于x的元素的个数(此处并非比较各元素的大小,而是通过对元素值的计数和
计数值的累加来确定)。一旦有了这个信息,就可以将x直接存放到最终的输出序列的正确位置上。例如,如果输入序列中只有17个元素的值小于x的值,则x可以直接存放在输出序列的第18个位置上。当然,如果有多个元素具有相同的值时,我们不能将这些元素放在输出序列的同一个位置上,因此,上述方案还要作适当的修改。
假设输入的线性表L的长度为n,L=L1,L2,..,Ln;线性表的元素属于有限偏序集S,|S|=k且k=O(n),S={S1,S2,..Sk};则计数排序可以描述如下:
1、扫描整个集合S,对每一个Si∈S,找到在线性表L中
小于等于Si的元素的个数T(Si);
我们看到,计数
排序算法没有用到元素间的比较,它利用元素的实际值来确定它们在输出数组中的位置。因此,计数排序算法不是一个基于比较的排序算法,从而它的计算时间下界不再是O(nlogn)。另一方面,计数排序算法之所以能取得线性计算时间的上界是因为对元素的
取值范围作了一定限制,即k=O(n)。如果k=n^2,n^3,..,就得不到
线性时间的上界。此外,我们还看到,由于算法第4行使用了downto语句,经计数排序,输出序列
中值相同的元素之间的相对次序与他们在输入序列中的相对次序相同,换句话说,计数排序算法是一个稳定的排序算法。
前向星不需要像邻接表那样用指针指向下一条边,还是挺方便的。但是,由于前向星初始化需要快排一遍,相对
邻接表要慢许多。考虑到一般图论题点数都不会很大,所以可以改为采用计数排序的思想对前向星进行排序。
如果用
快速排序,该算法的
复杂度为O(nlog^2n)。改用计数排序后,复杂度降为O(nlogn)。