求不等式的解集,叫做解不等式。不等式是用不等号将两个解析式连结起来所成的式子。在一个式子中的数的关系,不全是等号,含不等符号的式子,那它就是一个不等式。
相关概念
不等式是用不等号将两个解析式连结起来所成的式子。在一个式子中的数的关系,不全是等号,含不等符号的式子,那它就是一个不等式。例如2x+2y≥2xy,sinx≤1,ex>0 ,2x<3,5x≠5等 。根据解析式的分类也可对不等式分类,不等号两边的解析式都是
代数式的不等式,称为代数不等式;也分一次或多次不等式。只要有一边是超越式,就称为超越不等式。例如lg(1+x)>x是超越不等式。
不等式分为严格不等式与非严格不等式。一般地,用纯粹的大于号、小于号“>”“<”连接的不等式称为严格不等式;用不小于号(大于或等于号)、不大于号(小于或等于号)、不等号(不等于号)“≥”“≠”“≤”连接的不等式称为非严格不等式,或称广义不等式。
通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……,z)≤G(x,y,……,z )(其中不等号也可以为<,≥,> 中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。
相关性质
①如果x>y,那么y<x;如果y<x,那么x>y;
②如果x>y,y>z;那么x>z;
③如果x>y,而z为任意实数或
整式,那么x+z>y+z;
④ 如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz<yz;
⑤如果x>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z<y÷z。
⑥如果x>y,m>n,那么x+m>y+n。
⑦如果x>y>0,m>n>0,那么xm>yn。
⑧如果x>y>0,那么x的n次幂>y的n次幂(n为正数)。
如果由不等式的基本性质出发,通过逻辑推理,可以论证大量的初等不等式,以下是其中比较有名的。
⑨如果a>b,c>0,那么ac>bc。
如果a>b,c<0,那么ac<bc。
同解原理
主要的有:
①不等式F(x)< G(x)与不等式 G(x)>F(x)同解。
②如果不等式F(x) < G(x)的定义域被解析式H( x )的定义域所包含,那么不等式 F(x)<G(x)与不等式F(x)+H(x)<G(x)+H(x)同解。
③如果不等式F(x)<G(x) 的定义域被解析式H(x)的定义域所包含,并且H(x)>0,那么不等式F(x)<G(x)与不等式H(x)F(x)<H( x )G(x) 同解;如果H(x)<0,那么不等式F(x)<G(x)与不等式H (x)F(x)>H(x)G(x)同解。
④不等式F(x)G(x)>0与不等式同解;不等式F(x)G(x)<0与不等式同解。
注意事项
1.符号:
不等式两边都乘以或除以一个负数,要改变不等号的方向。
比两个值都大,就比大的还大;
比两个值都小,就比小的还小;
比大的大,比小的小,无解;
比小的大,比大的小,有解在中间。
3.另外,也可以在数轴上确定解集:
把每个不等式的解集在数轴上表示出来,数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集。有几个就要几个。带=号的,数轴上的点是实心的,反之,就是空心的。
解不等式组
步骤:
1.分别将不等式组中的各不等式设上①②③....
2.分别解出不等式
格式为:解①得....解②得...
(3.可以在数轴上分别表示出来,表示方法见注意事项3.)
4.将原来的解联立起来形成解集(联立方法见注意事项2)
5.若无解,则写上:此不等式组无解