蠕变
固体材料在保持应力不变的条件下、应变随时间延长而增加的现象
蠕变:固体材料在保持应力不变的条件下,应变随时间延长而增加的现象。它与塑性变形不同,塑性变形通常在应力超过弹性极限之后才出现,而蠕变只要应力的作用时间相当长,它在应力小于弹性极限施加的力时也能出现。许多材料(如金属、塑料、岩石和冰)在一定条件下都表现出蠕变的性质。由于蠕变,材料在某瞬时的应力状态,一般不仅与该瞬时的变形有关,而且与该瞬时以前的变形过程有关。许多工程问题都涉及蠕变。在维持恒定变形的材料中,应力会随时间的增长而减小,这种现象为应力松弛,它可理解为一种广义的蠕变。
蠕变定义
岩石在地质条件下的蠕变可以产生相当大的变形而所需要的应力却不一定很大。蠕变随时间的延续大致分3个阶段:①初始蠕变或过渡蠕变,应变随时间延续而增加,但增加的速度逐渐减慢;②稳态蠕变或定常蠕变,应变随时间延续而匀速增加,这个阶段较长;③加速蠕变,应变随时间延续而加速增加,直达破裂点。应力越大,蠕变的总时间越短;应力越小,蠕变的总时间越长。但是每种材料都有一个最小应力值,应力低于该值时不论经历多长时间也不破裂,或者说蠕变时间无限长,这个应力值称为该材料的长期强度。岩石的长期强度约为其极限强度的2/3。
蠕变具体描述
发展阶段
图1表示在三个不同的恒定应力作用下,材料的应变ε随时间t变化的典型蠕变曲线。曲线的终端表示材料发生断裂。t=0时的应变表示加载结束时的即时应变,它包括弹性应变和塑性应变。蠕变曲线可分为三个阶段,如图2所示:I为非定常蠕变阶段,应变率随时间的增加而减小;II为定常蠕变阶段,应变率保持常值;在最末阶段Ⅲ,应变率随时间而增大,最后材料在tr时刻发生断裂。通常,升高温度或增加应力会使蠕变加快并缩短达到断裂的时间。若应力较小或温度较低,则蠕变的第二阶段(Ⅱ)持续较久,甚至不出现第三阶段(Ⅲ),如图1中对应的蠕变曲线;相反,若应力较大或温度较高,则蠕变的第二阶段(Ⅱ)较短,甚至不出现,如图1中对应的蠕变曲线。
理论发展现状
目前,还没有一个适用于一切材料的统一蠕变理论。对金属材料目前主要有老化理论、强化理论和蠕变后效理论。如以表示蠕变的应变(为t=0时的应变),表示蠕变应变率,则对于单向受力情形,这些理论的不同在于:老化理论认为,在恒应力的条件下,时间t以显函数出现于蠕变应变的表达式之中,即p。强化理论认为,蠕变应变率主要取决于蠕变应变,即有。蠕变后效理论则认为,蠕变现象实质上是塑性后效,去除应力之后,后效应变是不可恢复的,若以塑性变形规律为基础,可将分解为两部分:
等号右端第一项为基本部分;第二项为后效影响部分,K称为影响函数,它是在τ时刻的单位时间内,单位应力在此后时刻t所引起的变形。上述各关系式可推广到三向应力状态,但都只在一定条件下近似反映出材料的蠕变性能。
蠕变的微观机制对于不同的材料是不同的。引起多晶体材料蠕变的原因据认为是原子晶间位错引起的点阵的滑移以及晶间的滑移等。
材料在恒拉应力作用下,经过一定时间tr以后发生断裂的现象称为蠕变断裂。在给定温度下,使材料经过规定时间发生断裂的应力值称为持久强度。表示恒应力σ随断裂时间tr的变化曲线称为持久强度曲线。在三向应力状态下,一般采用最大正应力(或经适当修正,以考虑剪应力的影响)作为等效应力来绘制持久强度曲线。在恒定压应力下,构件中的位移经过一段时间后会急剧增大,这种现象称为蠕变曲屈,它是受压构件在蠕变条件下的一种失效形式。
蠕变条件
蠕变机制有扩散滑移两种。在外力作用下,质点穿过晶体内部空穴扩散而产生的蠕变称为纳巴罗-赫林蠕变;质点沿晶体边界扩散而产生的蠕变称为柯勃尔蠕变。由晶内滑移或者由位错促进滑移引起的蠕变称为滑移蠕变,也称魏特曼蠕变。蠕变作用解释了岩石大变形在低应力下可以实现的原因。
蠕变在低温下也会发生,但只有达到一定的温度才能变得显著,称该温度为蠕变温度。对各种金属材料的蠕变温度约为0.3Tm,Tm为熔化温度,以热力学温度表示。通常碳素钢超过300-350℃,合金钢在400-450℃以上时才有蠕变行为,对于一些低熔点金属如铅、锡等,在室温下就会发生蠕变。
改善蠕变方法
1 改善蠕变可采取的措施有:
(1)高温工作的零件要采用蠕变小的材料制造,如耐热钢等;
(2)对有蠕变的零件进行冷却或隔热;
(3)防止零件向可能损害设备功能或造成拆卸困难的方向蠕变。
铸造砂型(砂芯)起模后的变形叫蠕变。如:酯固化水玻璃自硬砂砂型(芯)起模后常发生蠕变。改善蠕变可采取的措施有:尽可能缩短可使用时间;用复合固化剂;砂型强度允许条件下少加水玻璃;适当增加固化剂加入量;鼓热风强制硬化。
2 对于结构材料的抗蠕变性能的提高
(1)材料在其Tg(玻璃化温度)以下使用。
(2)使大分子产生交联。
(3)主链引入芳杂环或极性基团。
蠕变断裂机理
金属材料在蠕变过程中可发生不同形式的断裂,按照断裂时塑性变形量大小的顺序,可以讲蠕变断裂分为如下类型:
沿晶蠕变断裂
沿晶蠕变断裂是常用高温金属材料(如耐热钢、高温合金等)蠕变断裂的一种主要形式。主要是因为在高温、低应力较长时间作用下,随着蠕变不断进行,晶界滑动和晶界扩散比较充分,促进了空洞、裂纹沿晶界形成和发展。
穿晶蠕变断裂
穿晶蠕变断裂主要发生在高应力条件下。其断裂机制与室温条件下的韧性断裂类似,是空洞在晶粒中夹杂物处形成,并随蠕变进行而长大、汇合的过程。
延缩性断裂
延缩性断裂主要发生在高温(T > 0.6 Tm )条件下。这种断裂过程总伴随着动态再结晶,在晶粒内不断产生细小的新晶粒。由于晶界面积不断增大,空位将均匀分布,从而阻碍空洞的形成和长大。因此,动态再结晶抑制沿晶断裂。晶粒大小与应变量成反比。
目前,蠕变理论、蠕变断裂的微观机制以及蠕变和工程构件其他失效形式的相互作用的研究仍不成熟,有待今后继续深入。
参考资料
最新修订时间:2024-04-02 16:16
目录
概述
蠕变定义
蠕变具体描述
参考资料