蛋白变性剂,就是指会使得蛋白质发生变性作用的试剂,变性作用是蛋白质受物理或化学因素的影响,改变其分子内部结构和性质的作用。一般认为蛋白质的二级结构和三级结构有了改变或遭到破坏,都是变性的结果。
能使蛋白质变性的化学方法有加强酸、强碱、重金属盐、尿素、丙酮等;能使蛋白质变性的物理方法有加热(高温)、紫外线及X射线照射、超声波、剧烈振荡或搅拌等。生物方面可以用病毒或某些毒液。
蛋白质的
生物活性是指蛋白质所具有的酶、激素、毒素、抗原与抗体、
血红蛋白的载氧能力等生物学功能。生物活性丧失是蛋白质变性的主要特征。有时蛋白质的空间结构只要轻微变化即可引起生物活性的丧失。
蛋白质变性后理化性质发生改变,如溶解度降低而产生沉淀,因为有些原来在分子内部的
疏水基团由于结构松散而暴露出来,分子的不对称性增加,因此粘度增加,扩散系数降低。
尿素和盐酸胍在高浓度(4~8mol/L)水溶液时能断裂氢键,从而使蛋白质发生不同程度的变性。同时,还可以通过增大疏水基酸性残基在水相中的溶解度,降低疏水相互作用。在室温下4~6mol/L尿素和3~4mol/L盐酸胍,可使
球状蛋白质从天然状态转变至变性状态的中点,通常增加变性剂浓度可提高变性程度,通常8mol/L尿素的变性能力强。一些球状蛋白质,甚至在8mol/L尿素溶液中也不能完全变性,然而在8mol/L盐酸胍溶液中,他们一般以无规则卷曲(完全变性)构象状态存在。
(1)变性蛋白质能与尿素和盐酸胍优先结合,形成变性蛋白质-变性剂复合物,当复合物被除去,从而引起N→D反应平衡向右移动。随着变性剂浓度的增加,天然状态的蛋白质不断转变为复合物,最终导致蛋白质完全变性。然而,由于变性剂与变性蛋白的结合是非常弱的。因此,只有高浓度的变性剂才能引起蛋白质完全变性;
(2) 尿素与盐酸胍对疏水
氨基酸残基的增溶作用。因为尿素和盐酸胍都具有形成氢键的能力,当他们在高浓度时,可以破坏水的氢键结构,结果尿素和盐酸胍就成为非极性残基的较好溶剂,使之蛋白质分子内部的疏水残基伸展和溶解性增加。尿素和盐酸胍引起的变性通常是可逆的。但是,在某些情况下,由于一部分尿素可以转变为氰酸盐和氨,而蛋白质的氨基能够与氰酸盐反应,引起蛋白质电荷分布的改变。因此,尿素引起的蛋白质变性有时很难完全复性。一些还原剂(
半胱氨酸、
抗坏血酸、
β-巯基乙醇和DTT)的使用,可以还原二硫键,能有助于变性后蛋白的复性。