利用
溶质在互不相溶的
溶剂里
溶解度的不同,用一种溶剂把溶质从另一溶剂所组成的溶液里提取出来的操作方法。例如,用
四氯化碳从碘水中萃取碘,就是采用萃取的方法。
概念
利用化合物在两种互不相溶(或微溶)的溶剂中溶解度或
分配系数的不同,使化合物从一种溶剂内转移到另外一种溶剂中。经过反复多次萃取,将绝大部分的化合物提取出来。萃取时如果各成分在两相溶剂中分配系数相差越大,则
分离效率越高、如果在水提取液中的有效成分是
亲脂性的物质,一般多用亲脂性有机溶剂,如苯、氯仿或
乙醚进行两相萃取,如果有效成分是偏于
亲水性的物质,在亲脂性溶剂中难溶解,就需要改用弱亲脂性的溶剂,例如
乙酸乙酯、
丁醇等。还可以在氯仿、乙醚中加入适量乙醇或甲醇以增大其亲水性。提取黄酮类成分时,多用乙酸乙脂和水的两相萃取。
一个萃取体系由
有机相即有机溶液和水相即水溶液组成,在同一萃取体系中,两相互不相溶或基本不相溶。有机通常由萃取剂和稀释剂组成,
水相通常是含有一种或多种被提取或分离的金属水溶液,被萃物从有机转移到水溶液的过程称为反萃取。萃取是在萃取设备中进行的,按水相料液是否含有固体悬浮物分为清液萃取和矿浆萃取;按两种以上萃取剂在萃取过程中的作用,分为协同萃取和反协同萃取。主要参数有
相比、
分配比、
分离系数、萃取率。
在
湿法冶金中,萃取法常用于从水溶液中提取有价金属或作为溶液净化的一种手段。与其他分离法如
沉淀法、
离子交换法相比,萃取法具有提取和分离效率高、试剂消耗少、回收率高、生产能力大、设备简单、易实现自动化和连续化等优点,近年来在湿法冶金、石油化工、环境保护等部门中得到越来越广泛的应用。
主要特点
提取
亲水性强的
皂甙则多选用正丁醇、
异戊醇和水作两相萃取。不过,一般有机溶剂亲水性越大,与水作两相萃取的效果就越不好,因为能使较多的亲水性杂质伴随而出,对有效成分进一步精制影响很大。
分类
萃取的机理既有物理的溶解作用,又有化学的配合作用,是一个复杂的物理溶解过程 。一般而言,萃取那些简单的不带
电荷的共价分子时为物理溶解过程。但在大多数情况下,被萃取物与有机相中一种或多种组分发生化学变化,生成新的化学物种后被萃入有机相,这便属于化学过程。按照萃取机理的不同,可分为五种类型:
(1)简单分子萃取:被萃组分在两相中均以中性分子存在,与溶剂不产生化学反应,只是以简单分子形式在两相进行物理分配。
(2)中性配合萃取:被萃取组分与萃取剂都是中性分子,他们结合生成中性配合物进入有机相,可以把生成的中性配合物看成溶剂化物,故这种类型的萃取又可称为溶剂化萃取。
(3)酸性配合萃取:水相中的金属离子以阳离子或能离解为阳离子的配合离子状态存在,与酸性萃取剂形成不含亲水基团的中性配合物进入有机相。
(4)
离子缔合萃取:水相中的金属离子以配阴离子(或阳离子)与含氧或含氮的萃取剂以离子缔合的方式形成萃合物进入有机相。
(5)协同萃取:在萃取时,使用两种以上的萃取剂相混合,萃取水相中的被萃物生成油溶性更大的协萃物进入到有机相。
工艺流程
作为一种分离技术,萃取的工艺流程是由萃取、
洗涤、反萃取三个基本步骤构成一个完整的萃取循环过程。当有机相和水相充分接触时,水相中的某些金属便会选择性的转移到有机相,金属的这种转移过程称作萃取。萃取达到平衡经静置分层后,这时的水相称为萃余液,而含有某种或某些金属的有机相称为负载有机相。负载有机相经反萃取使某种被萃入有机相的金属转入水溶液。然后从这种反萃取液中回收其他金属,从而达到金属的分离或富集的目的。反萃后不含或少含金属的有机相称为再生有机相,返回萃取用。有时在反萃取之前要用洗涤剂从负载有机相中洗去某种金属或杂质。在萃取流程操作中必须实现:(1)使水相与有机相进行充分接触;(2)使有机相与水相分离;(3)负载有机相进行反萃取,再生有机相循环使用。
展望
萃取作为分离和提纯物质的重要单元过程,今后还会得到进一步的发展,其主要发展方向是:
(1)研究新的萃取体系和新的萃取工艺;
(2)合成和筛选高效萃取剂;
(3)研究与发展新型萃取设备,重点应放在设备的自动化、连续化上;
(4)开展萃取机理及理论的研究。