充分性是
数理统计的一个重要基本概念,它是R.A.费希尔在1925年引进的,费希尔提出,并由J.奈曼和P.R.哈尔莫斯在1949年严格证明了一个判定统计量充分性的方法,叫因子分解定理。这个定理适用面广且应用方便,利用它可以验证很多常见统计量的充分性。例如,若正态总体有已知
方差,则样本均值塣是充分统计量。若正态总体的均值、方差都未知,则样本均值和样本方差S合起来构成充分统计量(塣,S)。一个统计量是否充分,与总体分布有密切关系。
将样本加工成统计量要求越简单越好。简单的程度的大小,主要用统计量的
维数来衡量。简单地讲,若统计量T2是由统计量T1加工而来(即T2是T1的函数)T2比T1简单。在此意义上,最简单的充分统计量叫极小充分统计量。这是E.L.莱曼和H.谢菲于1950年提出的。前例中的充分统计量都有极小性。在任何情况下,样本x1,x2,…,xn本身就是一个充分统计量,但一般不是极小的。
关于统计量的另一个重要的基本概念是完全性。设T为一统计量,θ为总体分布参数,若对θ的任意函数g(θ),基于T的无偏估计至多只有一个(以概率1相等的两个估计量视为相同),则称T为完全的。
统计量的性质以及使用某一统计量作推断的优良性,取决于其分布。所以
抽样分布的研究是数理统计中的重要课题。寻找统计量的精确的抽样分布,属于所谓的
小样本理论(见
大样本统计)的范围,但是只在
总体分布为正态时取得比较系统的结果。对一维正态总体,有三个重要的抽样分布,即Ⅹ分布、t分布和F分布。
Ⅹ分布 设随机变量x1,x2,…,xn是相互独立且服从标准正态分布N(0,1),则随机变量的分布称为自由度为n的Ⅹ分布(其密度函数及下文的t分布、F分布的密度函数表达式均见
概率分布)。这个分布是 F.赫尔梅特于1875年在研究正态总体的
样本方差时得到的。若x1,x2,…,xn是抽自正态总体N(μ,σ)的简单样本,则变量服从自由度为n-1的Ⅹ分布。若x1,x2,…,xn服从的不是
标准正态分布,而依次是正态分布N(μi,1)(i=1,2,…,n),则的分布称为非中心Ⅹ分布,称为非中心参数。当δ=0时即前面所定义的Ⅹ分布。为此,有时也称它为中心Ⅹ分布。中心与非中心的Ⅹ分布在正态线性模型误差方差的估计理论中,在正态总体方差的检验问题中(见
假设检验),以及一般地在正态变量的二次型理论中都有重要的应用。
t分布设随机变量ξ,η独立,且分别服从正态分布N(δ,1)及自由度n的中心Ⅹ分布,则变量的分布称为自由度n、非中心参数δ的非中心t分布;当δ=0时称为中心t分布。若x1,x2,…,xn是从正态总体N(μ,σ)中抽出的简单样本,以塣记样本均值,以记样本方差,则服从自由度n-1的t分布。这个结果是英国统计学家W.S.戈塞特(又译哥色特,笔名“学生”)于 1908年提出的。t分布在有关正态总体均值的估计和检验问题中,在正态线性统计模型对可估函数的推断问题中有重要意义,t分布的出现开始了数理统计的小样本理论的发展。