绝热节流
电力学术语
当气体在管道中流动时,由于局部阻力,如遇到缩口和调节阀门时,其压力显著下降,这种现象叫做节流。工程上由于气体经过阀门等流阻元件时,流速大时间短,来不及与外界进行热交换,可近似地作为绝热过程来处理,称为绝热节流。
基本介绍
节流
管道中的流体流过截面突然缩小的阀门、狭缝及孔口等部分后发生压力降低的现象,称为节流。节流过程是一种典型的不可逆过程。
工程上常利用节流过程控制流体的压力,还可利用节流时压力降低与流量的对应关系制成流量计等。
右图为气体流经一孔口时节流过程的示意图。
绝热节流
节流过程中气流与外界的热交换可以忽略不计时,可以认为节流过程为绝热过程,称为绝热节流。
气体绝热节流的特征:
(1)忽略略气体流动动能的变化,绝热节流前后焓值相等,h1=h2 ,但绝热节流过程不是定焓过程。
(2)绝热节流过程中气体压力降低。
(3)由于扰动、涡流等不可逆因素的影响,绝热节流过程中气体的熵将增加。
(4)绝热节流使气体的火用值降低。
节流过程是指流体(液体、气体)在流道中流经阀门、孔板或多孔堵塞等设备时压力降低的一种特殊流动过程。如果节流过程中流体与外界没有热量交换就称为绝热节流。节流过程在热力设备中常用于压力调节、流量调节或测量以及获得低温等方面。
节流过程是典型的不可逆过程,过程中流体处于非平衡状态。研究节流过程,是研究从节流前到节流后流体分别处于平衡态时各种参数通过过程引起的变化。
计算公式
因为过程中流体与外界无热量交换,亦无净功量的交换,如果保持流体在节流后的高度和流速不变,即无重力位能和宏观动能的变化(或变化小到可以忽略不计),则节流后流体的焓h2与节流前的焓h1相等,即
h2 = h1
同时,因绝热节流是不可逆的绝热过程,节流后流体的熵必然增大,有
s2 > s1
气态流体经绝热节流后,比体积随压力降低而增大,即v2>v1;而液态流体的比体积节流前后变化很小。
绝热节流前后流体(流体、气体)的温度变化称为节流的温度效应。节流后流体的温度降低(T2T1),称为节流热效应;节流前后流体的温度相等(T2=T1),称为节流零效应。节流的温度效应与流体的种类、节流前所处的状态以及节流前后压力降落的大小有关。
绝热节流的温度效应可用绝热节流系数 表征。对于压降很小的节流过程,mJ>0,表示节流冷效应;mJ<0,表示节流热效应;mJ=0,表示节流零效应,称为微分节流效应。对于有限压降的绝热节流过程,温度变化可沿连接节流前、后状态的定焓线用如下积分式计算:称为积分节流效应。
测定绝热节流系数的实验叫作焦耳-汤姆逊实验。保持流体进口状态1不变,而用改变节流阀门开度或改变流体流量等方法,可以得到流体经过节流后的不同出口状态2a、2b、2c…。测出各状态的压力和温度值,并把它们表示在T–p坐标图上。流体在节流前、后焓值相等,即状态点1、2a、2b、2c…有相同的焓值,它们的连线是一条定焓线。改变进口状态1,重复进行上述实验,就可得出一系列不同数值的定焓线,并可在T–p图上描出定焓线簇。在任意的一个状态点上,定焓线的斜率就是实验流体处于该处状态时的绝热节流系数mJ。
注意,定焓线并非绝热节流过程线,只是液体绝热节流前、后的状态落在同一条定焓线上。节流过程是典型的不可逆过程,过程中流体处于极不平衡的状态,不能在状态参数坐标图上用曲线表示出来。
在一定的焓值范围内,每一条定焓线有一个温度最大值点,如1–2e线上的M 点。在这个点上,这个点称为转变点,其温度称为转变温度Ti。把所有定焓线上的转变点连结起来,就得到一条转变曲线。转变曲线将T–p图分成两个区域:在曲线与温度轴包围的区域内恒有mJ>0,发生在这个区域内的绝热节流过程总是呈节流冷效应,称为冷效应区;在转变曲线以外的区域内,恒有mJ<0,发生在该区域内的绝热节流过程总是呈节流热效应,称为热效应区。如果流体的进口状态处于热效应区,而经绝热节流后的出口状态进入冷效应区,那么呈现的温度效应就与压力降落的范围有关。例如,节流前流体处于图中的2a状态,当压降不很大,而节流后状态落在2d点(它与2a点温度相等)的右侧时,可呈节流热效应;但当压降足够大,使节流后的状态落在2d点左侧时,则将呈节流冷效应。压降愈大,流体温度降低愈甚。
转变曲线具有一个压力为最大值的极点。这一点的压力pN称最大转变压力。流体在大于pN的压力范围内不会发生节流冷效应。数值小于pN的任一定压线p与转变曲线有两个交点,对应着两个温度值T1和T2,分别叫作对应于压力p的上转变温度和下转变温度。转变曲线与温度轴(p→0)上方的交点(K点)对应的温度是最大转变温度TK,下方的交点对应最小转变温度Tmin。流体温度高于最大转变或低于最小转变温度时,不可能发生节流冷效应。
节流致冷是获得低温的一种常用方法,特别是在空气和其它气体的液化以及低沸点制冷剂的制冷工程中。节流致冷时,流体的初始温度应该低于最大转变温度TK。一般气体的TK远高于室温,约为临界温度的4.85~6.2倍。如二氧化碳的 »1 500K,氩气的TK(Ar)=732K,氮气的 ,空气的TK(Air)=603K。对于最大转变温度低于室温的气体,例如氢 和氦 ,则必须将它们预先冷却到TK以下,方能得到节流致冷的效果。
参考资料
绝热节流.工程热力学.
绝热节流.百度知道.
最新修订时间:2024-07-05 22:44
目录
概述
基本介绍
参考资料