依照费率厘定的原则,保险纯费率应当与保险事故发生的概率和保险事故发生后的赔偿金额有关。因此,确定纯费率,一方面要研究有效索赔的概率分布,也就是未来保额损失的可能性,即保额损失概率;另一方面要研究有效索赔的金额。我们通常按照统计学的原理,利用过去的数据来推断这两方面的指标,并由此得出有效索赔额的均值。通常采用的方法是,根据历年的有效索赔数额,计算出单位保额的平均有效索赔额,即平均
保额损失率。然后,用其近似的估计未来单位保额的有效索赔额,进而确定纯费率。
由于保险事故的发生在实践上具有很强的随机性,只有在一个较长的时期里才比较稳定,因此纯费率的计算应当取一个较长时期的数据,通常不少于5年。若知各年的保额损失率,则可计算平均保额损失率。平均保额损失率的计算公式为:
均方差是各保额损失率与平均损失率离差平方和平均数的平方根。它反映了各保额损失率与平均保额损失率相差的程度,说明了平均保额损失率的代表性,均方差越小,则其代表性越强;反之,则代表性差。若以S表示均方差,则其计算公式为:
对于平均保额损失率附加均方差的多少,取决于损失率的稳定程度。对于损失率较稳定的,则其概率 不要求太高,相应地概率度 为1即可;反之,则要求概率较高,以便对高风险的险种有较大的把握,从而稳定经营,相应的概率度为2或3。
稳定系数是均方差与平均保额损失率之比。它衡量期望值与实际结果的密切程度,即平均保额损失率对各实际保额损失率的代表程度。稳定系数越小,保险经营稳定性越高;反之,稳定系数越大,保险经营的稳定性越低。一般认为,稳定系数在10%~20%是较为合适的。稳定系数的计算公式为:
↑ 1.0 1.1 1.2 《保险学概论》
保险职业学院,第4章 保险费率的厘定,4.2 非寿险保险费率的厘定