磁稳定性(magnetic stability)是岩石能够保持原生
剩余磁化强度的程度。岩石的原生剩余磁化强度,在地质年代中经历各种作用(热、磁、机械力的作用及化学变化等)后,它的数值将发生不同程度的变化。另外稳定性是永磁材料的重要参数。
简介
数值变化小的说明它的磁稳定性强,数值变化大的说明它的磁稳定性弱。只有磁稳定性强的岩石才适用于古地磁研究。鉴定岩石磁稳定性,有野外方法和实验室方法,前者是通过检查方位变动后的岩层或岩块各部位的
剩余磁化强度在空间的取向来确定。如果剩余磁化强度的空间取向与岩石变动的方向一致时,则说明岩石的磁稳定性强。这是一种定性的方法,不能准确地、定量地鉴定岩石的磁稳定性。实验室鉴定,是使岩石的标本经受一些人为的影响后,根据它的磁化强度的变化程度,确定它的磁稳定性。
永磁材料稳定性
影响永磁稳定性的外界条件有许多种,其中主要是
温度、
时间、外磁场、
化学腐蚀、
辐射、
机械振动或撞击等因素。外界条件的变化主要引起磁性能两方面的变化:一种是
磁畴结构的变化,这种变化是可逆的,即是可恢复的;另一种是永磁体组织结构的变化,这种变化是不可恢复的。一般情况下,外界影响导致磁性能的变化都可能包括这两种变化。对于
钕铁硼永磁材料,我们在使用中最关心的是
温度稳定性、时间稳定性、外磁场稳定性及
化学稳定性。
温度稳定性
当钕铁硼永磁体
工作环境的温度在一定范围内变化时,磁体的
磁通量Φ(TotalFlux)都会发生相应的变化,如下图示:
我们用剩磁可逆温度系数αBr、Hcj温度系数βHcj和磁通不可逆损失hirr来衡量钕铁硼磁性能随温度而发生的变化。
剩磁温度系数
剩磁可逆温度系数αBr:当工作环境温度自室温T0升至温度T1时,钕铁硼的剩磁Br也从B0降至B1;当环境温度恢复至室温时,Br并不能恢复到B0,而只能到B0'。此后当环境温度在T0和T1间变化时(假设变化量不是很大),Br的变化是线性可逆的。
同理,我们可以得出
内禀矫顽力Hcj的温度系数βHcj如下:
温度系数α和β所衡量的只是磁性能的可逆变化,即是恢复温度即可恢复磁性能。
磁通公式
现实中我们更常见到的是不可逆转的变化,特别是在磁体开路状态下测试其磁通量(TotalFlux)随温度变化至T1而产生的不可恢复的相对变化量,我们称之为温度T1下磁通的不可逆损失hirr,公式为:
从使用的角度看,是希望αBr、βHcj和hirr都是越小越好。但事实上在开路状态下,对于特定工作点(即磁体元件的尺寸和形状)的NdFeB磁体,其αBr较高,一般为-0.11-0.12%/℃;βHcj也较高,一般为-0.6-0.7%/℃(但其与温度段有直接关系)。那么对于αBr和βHcj何者更重要呢?这取决于工作点的选择,如果磁体的工作点较高,即B/H>>1时αBr起主要的影响作用,而当B/H<<1时βHcj对磁场的稳定性起主要影响作用。而对于磁通的不可逆损失hirr,通常要求>1,在该磁体材料允许使用的最高温度下,该磁体的hirr应≤5%.比如33SH性能标准块(2″×2″×1″)在恒温150℃×1小时后恢复至常温,其hirr<5%.
当外界温度自室温上升,磁性能初始的损失是可逆的,恢复温度即可恢复磁性能;其后包括了不可逆但可恢复的损失,也就是说此时的磁性能损失虽不能通过恢复温度来挽回,但通过再充磁还是可以恢复的;若温度升至磁体的居里温度以上时,磁体的组织结构遭到不可恢复的破坏,即为不可逆且不可恢复的磁性能损失。
研究进展
一般使用情况下,解决温度稳定性的办法是做老化处理,以消除磁体不稳定的因素(当然,这是以损失部分磁性为代价的,一般为10%)。老化处理的温度和时间根据用途或用户要求来做。例如:可在开水中沸煮3小时,或在烘箱中附铁板加热老化,也可在高
真空烧结炉中准确恒温125℃×1.5小时。另外还有一些办法,可通过添加某些元素直接提高磁体本身的温度稳定性。如微波通讯器件的应用领域,要求
磁感应强度温度系数αBr越低越好,近几年此方面的研究有了很大进展:
①添加Co,能有效地提高居里温度(一般加入1at.%Co,可提高Tc约10℃);同时,添加Co,可使3d亚点阵间的交换作用加强,从而使αBr得以提高。而加入Dy,尽管会降低居里温度,但由于其磁矩与Fe亚点阵磁矩反平行耦合,故亦可改善αBr。如同时添加:用Co替代Fe,用Dy替代Nd,且当比例适当时,NdFeB磁体的αBr可降到0。如对成分为(Nd0.5Dy0.5)15.5Fe51Co26B7.5磁体,其磁性能即可达:Br=0.88T;Hcj=1.23MA/M-1(15KOe),Hcb=525.4KAM-1;BHm=119.4KJ/M3,αBr=0.00%/℃;磁通不可逆损失≤5%.
②在此基础上,添加Ga,W,可得到低αBr的烧结NdFeB磁体。
③而磁体中添加Tb,则不仅可得到低的αBr,而且能保持高的Hcj和BHm。
电机磁钢
再比如电机使用的磁钢,对αBr没有太大要求,但却要求βHcj越低越好。βHcj改善很难,但也有一些研究成果表明:
①添加Dy、Tb、Ga,能改善烧结磁体的βHcj;
②添加Sn,能改善烧结磁体的βHcj:NdFeB磁体或含Al、Dy的NdFeB磁体添加Sn,使局部有效退磁因子Neff减小,从而使矫顽力温度系数βHcj得以降低。但βHcj值的降低效果有限。故实际应用中,主要是通过提高Hcj来提高βHcb,降低磁通不可逆损失。经验表明:工作点Pc=2,Hcj≥17KOe时,βHcb能从-0.6%/℃降到-0.2%/℃。
③关于磁通不可逆损失hirr:运用磁学唯象理论知识,可推导磁通不可逆损失的计算公式为:
hirr=(其中Hd(T)为退磁场)
如假定αBr、βHcj随温度线性变化,则进一步有:
磁通不可逆损失hirr=(CGS)
降低磁通途径
据上面的公式可知,要降低磁通不可逆损失,可有以下几个途径:
·添加Dy、Nb、V、Ga等微量元素,以降低βHcj,从而降低磁通不可逆损失。
·添加微量元素,降低Neff:既降低D值,也降低βHcj,从而最终降低磁通不可逆损失:研究表明:
钕铁硼磁体中添加微量Sn,可降低合金内部的局域有效退磁场,也可降低矫顽力温度系数βHcj,从而使磁体磁通不可逆损失得以降低。
·通过改善磁体粒度分布及晶粒一致性,以减小Br-Mk的差值,从而降低磁通不可逆损失。
·选择合适的长径比,得到合适的D值。
·选择合适的使用温度,使磁通不可逆损失控制在所需的范围。
时间稳定性
所谓时间稳定性,是将永磁体放在一定的温度下长期放置,测量其磁性能随时间的变化。永磁体充磁饱和后,只是在初始的1~2小时内略有下降,其后即使经过5~10年磁性能也基本不变。其时间稳定性数值依成分、实验条件、和尺寸比的不同略有差异。复合添加Co+Dy+Nb的
钕铁硼永磁体,可得到良好的时间稳定性。下图示出在常温下该复合永磁体Pc=1时,磁通随时间的变化所发生的衰减,十年内磁通衰减不到10%。
外磁场稳定性
电机用
磁体,在工作过程中气隙长度和体积是变化的,属动态磁路。磁体不但受到温度变化的影响,而且还受到电枢磁动势对其反向退磁的影响。由于工作点是在回复线上往返变化,就使得磁体处于循环退磁状态。这要求我们在做电机磁路设计时,不但要考虑温度变化的影响,还要考虑到动态退磁的附加影响。一般功率型的
直流电机,由于电枢效应,其最低工作点大约都在-0.6的地方,此时要求磁体在电机的连续工作温度下B-H曲线仍为直线,如果B-H曲线发生弯曲,磁体就会因电枢效应产生永久性退磁;另外还有对磁体在电机的极限温度下,要求其磁通不可逆损失hirr≤5%.
化学稳定性
所谓
化学稳定性是指永磁材料的
抗氧化和耐腐蚀程度。相对于传统的铁氧体或Sm系永磁,
烧结钕铁硼的化学稳定性是最差的。如直接暴露在大气中就会不断氧化、发生锈蚀。由于烧结钕铁硼磁体是粉末冶金工艺制造、由3个相构成的
复合组织,其表面存在着磨削加工所产生的恶化层和材料自身存在的一些气孔、氧化相等。空气中的水分就从磁体表面的或接近表面的富B相和气孔处进行腐蚀。
目前解决
钕铁硼永磁体化学稳定性的办法主要是添加某些合金元素如Co、Ni、Al和Cr等,同时在烧结工艺中尽量提高密度、减少气孔。如通过Co+Ni+Al的复合添加,合金磁体在70℃和相对湿度95%的环境中进行48小时实验,其表面仍有
金属光泽而未见腐蚀。另一种解决化学稳定性的办法是对磁体进行表面处理,如电镀、化学镀等表面处理,可使磁体获得实用的耐腐蚀性能。