磁冻结定理(theorem of frozen-in field) 阐述理想导电流体和磁场一起运动的规律的定理,即①开尔文定理:通过和理想导电流体一起运动的任意封闭曲线所围面积的磁感应通量守恒;②亥姆霍兹定理:在理想导电流体中,起初在某磁力线上的流体元以后一直位于此磁力线上。此两定理与涡旋在流体中运动的两条同名定理类似。
概述
假设流体是理想导电流体(电导率σ=∞),则描述磁场变化率的方程为:
式中B为磁感应强度;v为流体速度(见磁流体力学基本方程组)。此方程和无粘性不可压缩流体的涡旋方程相似,故有上述同涡旋相对应的两条定理。
为了解磁冻结定理的实质,可考察流体最简单的运动对磁场的影响。假设在理想导电流体中有一均匀磁场B (见图1),在垂直于磁场的平面上取一半径为 R的流体环T0。如果T0以径向速度vR向外膨胀,由于它切割磁力线,必然产生顺时针环向电场vRB。由于流体电阻为零,在T0中必然产生一等量逆时针环向电场E,否则将发生无穷大电流。因此,根据法拉第电磁感应定律可以算出,流体环从T0经时间dt膨胀到T位置时,环内的磁感应通量必须减少2πRvRBdt,方可抵消流体环膨胀时切割磁力线产生的电场vRB。这些应减少的磁感应通量正好在T环和T0环之间,所以如果从运动的流体环上看,流体环围绕的磁感应通量不变,磁力线随着流体环一起向外膨胀,即流体如同固结在磁力线上。把这种简单的流动情况推广到理想导电流体的任意流动情况,就可得到磁冻结定理中的两条定理,它们都有严格的数学证明。
参考书目
V. C. A.Ferraro and C.Plumpton,Introduction to Magneto-fluid Mechanics,Oxford Univ.Press,London,1961.
T. J. M.博伊德、J.J.桑德森著,戴世强、陆志云译:《等离子体动力学》,科学出版社,北京,1977。(T.J.M.Boyd andJ. J. Sanderson,Plasma Dynamics,Nelson,London,1969.)