对于地理、
测绘、
导航、行政和作战指挥来说,网格有其传统的含义,主要是指在
经纬网平面投影的基础上,构建一个与经纬网保持几何关系的网格体系,称为直角坐标网、
方里网(日)或坐标参考系(美)。这个“网格”是地图与实地联系的纽带,是传递定位信息的工具,是区域统计学的基础单元,因此各个国家都把它定为“国家标准”,甚至成为世界跨国区域性标准(如北约、东南亚国家)。
工具介绍
直角坐标网是我国大比例尺图上常见的坐标网类型,其以经纬线为图廓变线。当位于投影带东西边缘时,需要考虑是否绘制邻带坐标网,方便邻带地图量算。邻带坐标网是直角坐标网的一种特殊情况,其绘制也有严格的要求。根据比例尺和图幅范围确定出直角坐标网的数学基础参数,然后根据直角坐标网计算过程计算直角坐标网。
背景介绍
20世纪末,美国为了适应信息化多兵种联合作战指挥的需求,提出了一个“GIG”计划,称全球信息网格(global information grid),声势浩大,投入高,甚至引起了世界性的追捧,按计划也取得了一定进展。但这个网格(grid)并不是地理空间网格,它是一个在军用互联网基础上解决上下左右、人、武器装备互联互通的指挥系统,最后因与作战指挥传统的网格坐标参考系(UTM参考系)同名同姓,产生军语(术语)矛盾而放弃Urid的名称,改为DoDIN(department of defense information network) 。
本世纪初,北京市东城区搞了一个“城市网格管理”计划,把全区划分成很多小区,分配监管人员,配发手机,将区内事无巨细,包括一个下水井盖的丢失,都通报给网格中心及时修复或处理,一时间还在全国推广。也因其与原有城管系统的重叠,管理人员难以定岗定编,无疾而终。
这些“网格”的随意使用现象,都出自1988年福斯特(Ian Foster)提出的一时引发热潮的“网格计算”(grid computing)概念。其实质是在网络环境中的计算机,通过建立网格系统,使信息资源像电力资源那样即开即用。但网格计算过于理想化,信息资源构成十分复杂,非电力资源可比;在跨平台、跨组织、跨信任域的复杂异构环境中共享资源和解答问题,也有极大的技术难度,这些因素使网格计算在普适领域中,特别是在商业计算领域中逐渐被云计算所替代,网格的概念也在应用领域逐渐淡化。但是,对于许多高端科学和军事应用来说,仍需要依靠网格计算来解决问题。
在网络环境所谓“零距离零时间到达”的认识中,传统IT业对区域特征和地理分布的因素考虑得较少,但恰恰是地理空间的时空要素才是网格构成的核心。它的应用己有几百年的历史,在我国己有千余年的记录,重新定义网格,可能会引起认识的混乱。现在把网格问题讲清楚,认识到凡涉及区域定位的网格,必须有统一的国家标准,赋予构建的规则和编码,这样才有互联互通、共享资源的基础。眼下我国采用的空间网格系统就是世界通用的经纬度网和
国家测绘地理信息局公布的基于高斯一克吕格投影的直角坐标网。一切地理空间数据的采集、分析、分级、检索、表示、归档都受此国家标准的约束。
随着遥感技术的进步和网络环境的便捷应用,地理空间数据量空前增加,及时处理这些数据也会涉及地球表而剖分等算法的应用。近年来这个领域的研究不断深入,成果很多。这从客观上提出了一个传统地理空间框架是否需要改革的问题。在这个环节上,传统的以检索和定位为核心的网格方法,与互联网条件下所形成的现代计算网格的概念有了交集。例如圈层立体网格技术就是研究将地下到太空作为一个基于地球系统的整体来对待如何建立地球基础框架的问题。回顾历史,当前全球经纬度的划定和最后世界范围内统一,也是经历了多年的探索、实践和各种方案的选择才最后形成的。
当前,以物联网、大数据、云计算为标志的信息社会呈现出新的时代特征。地理空间信息网格将为构建统一的智能化空间感知体系、空间位置标识体系、新型空间信息组织模型和多维海量信息可视化平台提供基础支撑。不远的未来,以机器人为代表的
智能化信息平台有望利用地理空间信息网格进行环境自主感知、自主空间分析、自主行为控制等。地理空间信息网格不仅服务于人,还将服务于智能化平台,具有广阔的发展前景。
绘制流程
①确定图幅点数量
同地理坐标网的图框点数计算过程相同,不论是地图分幅编号的计算公式还是直接获取图幅角点坐标,归根结底都得到地图左下角的经纬度坐标值,根据我国基本比例尺和图幅间关系,可以得到经差和纬差的具体值,根据经纬度坐标值和经差、纬差,就可求出图框线上的点个数(高斯一克吕格投影除了中央经线和赤道是直线外,其余的经纬线都应绘制为曲线。当经纬线曲率不大时,可以用直线来代替(如矢长小于0.15 mm的曲线)。在图幅范围较大时,经线可以用直线代替,但纬线无论什么时候都不能用直线代替,而必须以若干折线代替曲线段。纬线需用几段折线代替,也就需要多少图廓点。这里我们把需要的点数称为点密度。当用户不设置时,使用国家规定的默认点数,当用户设置时,按用户设置点密度绘制图框线。
②计算和绘制图框线、内外图廓
利用高斯正算公式计算图框平面直角坐标,并在4个角点放置经纬度注记,然后根据内外图廓和图框之间的关系依次计算内图廓、外图廓的平面直角坐标。由于内外图廓不平行于坐标轴,而与图框线平行,因此内外图廓线的绘制是在图框线的基础上,根据内外图廓线距离图框线的距离,经过上、下、左、右平移得到内外图廓线的折线集合的。
③计算和绘制分度带。
分度带是以固定经纬差为单位细分的小短线,绘于内外图廓线之间。首先根据比例尺获取分度带的经纬差,然后计算出分度带与内外图廓线交点的坐标。由于内外图廓不平行于坐标轴,因此,图廓四边的细分点应分别计算,并且与内外图廓的角点也应分别计算。
④计算和绘制本带方里网
根据《地形图图式》规定,直角坐标网绘在东、西、南、北各图框线之间。为了计算直角坐标网和图框线及内图廓线的交点,首先计算出纵横首末的直角坐标网的取整后的X或y坐标,以及图幅范围需要绘制的直角坐标线的条数。然后计算整公里处和内图廓线的交点。由于图框线和坐标网线不平行,有一定的角度。为了保持图面整洁,避免图框线和内图廓线之间画线太多,有些首末直角坐标网线必然要断于图框线,和图框线相交,这些断点的坐标必须得到。如如图1中P点即为交点。所用公式如下:
X=(Y一y1)*(x1一x2)/(y1一y2)+x1
Y=(X一x1)*(y1一y2)/(x1一x2)+y1
由于内图廓线不是直线,而是由折线组成,在求直角坐标线和内图廓交点时比较麻烦。本文根据公里值区间,先判断该整公里值(Cx或Y值)和哪一横或纵折线段相交,然后利用点和直线相交关系计算出交点坐标。本文采用跨立实验先判断坐标线段和图框折线段是否相交。公式:
Ua=[(x4一x3)(y1一y3)一(y4一y3) (x1一x3)]/[(y4一y3)(x2一x1)一(x4一x3) (y2一y1)]
Ub=[(x2一x1)(y1一y3)一(y2一y1) (x1一x3)]/[(y4一y3)(x2一x1)一(x4一x3) (y2一y1)]
其中,如果Ua和Ub都在[[0, 1]区间,则线段相交。
当判断相交后采用两直线相交公式计算得到两直线的交点,Q点即为计算得到的交点。所用公式如下:
X=(x1(y1一y2)(x3一x4)一x3(x1一x2)(y3一y4)+(y3一y1)(x1一x2)(x一x4))/((y1一y2)(x3一x4)一(x1一x2)(y3一y4))
Y=(y3(y1一y2)(x3一x4)一y1(x1一x2)(y3一y4)+(x1一x3)(y1一y2)(y3一Y4))/ ((Y1一y2)(x3一x4)一(x1一x2)(y3一y4))
最后把计算得到的交点P和Q坐标连为线段L,即为本带直角坐标网线。如图1
⑤添加数字标注
直角坐标网的注记包括内外图廓和图框间的注记。进行图框线注记时,对于每一条图框线,根据计算的图框四个角点的坐标,再根据平台对注记的显示位置,分别计算四个角点注记的实际位置。图框线内部直角坐标网线的注记,在步骤④中得到直角坐标网线和图框的角点,然后根据平台注记标注位置,计算注记的实际位置。平台不同,注记位置计算也不一定相同,MapGIS平台的注记的位置坐标点的右上角,ArcGIS平台注记的位置是在坐标点的中上位置,后面第五章应用中有详细说明。
由于直角坐标网与内图廓之间间距的不确定性,可能导致注记重叠或注记与直角坐标网线产生相交的现象,本文设计时采取当直角坐标网和图框线图面距离小于0.5cm时,则不标注直角坐标网的值,避免注记重叠或相交。
按照图式规范绘制图框线、直角坐标网及分度带,并配置注记,基本上达到了图廓整饰的目的。