电气工程及其自动化
中国普通高等学校本科专业
电气工程及其自动化(Electrical Engineering and Automation)是一门普通高等学校本科专业,属电气类专业,基本修业年限为四年,授予工学学士学位。
发展历程
1908年,时任邮传部上海高等实业学堂(现交通大学)的唐文治校长,对系科设置进行了调整。先后增设了铁路专科、电机专科,学制三年,中国的电气工程高等教育由此发端,这是最早的电机专业。随着电力的发展和社会分工的需要,交通大学1913年将电机科改为电气机械科,1917年电气机械科开始设无线电门,1928年改为电机工程学院,1937年又改学院为系,分“电力门”和“电讯门”,即“强电”和“弱电”。
1912年,同济医工学堂(现同济大学)设立电机科,现发展为同济大学电子与信息工程学院电气工程系;1920年,公立工业专门学校(现浙江大学)设立电机科,现发展为浙江大学电气工程学院;1923年,中央大学(现南京大学)设立电机工程系;1932年,清华大学设立电机工程系,现发展为电机工程与应用电子技术系;1933年,北洋大学(现天津大学)设立电机工程系,现已发展为天津大学电气与自动化工程学院
1952年,中国进行大规模的院系调整,出现了一批以工科为主的多科性大学,也出现了一批机电类学院,这些院校基本上都设置了电机工程系或电力工程系。
1977年,恢复高考制度后,大部分高校的“电机工程系”或“电力工程系”陆续改为“电气工程系”。20世纪90年代后,又陆续改称“电气工程学院”。
1993年,在教育部颁布的普通高等学校本科专业目录中,工学门类中与电有关的专业被分成电工类和电子与信息类两个分支,电工类下设电机电器及其控制、电力系统及其自动化、高电压与绝缘技术、工业自动化、电气技术等5个专业。
1998年,教育部颁布了《普通高等学校本科专业目录(1998年颁布)》,将电工类和电子与信息类合并为电气信息类,原来的19个专业合并为7个。其中,原电工类的电机电器及其控制、电力系统及其自动化、高电压与绝缘技术、电气技术专业合并为电气工程及其自动化专业。
2012年,教育部颁布的《普通高等学校本科专业目录(2012年)》中,原电气工程及其自动化专业和电气工程与自动化、电气信息工程、电力工程与管理、电气技术教育、电机电器智能化特设专业合并为电气工程及其自动化专业。
2020年,教育部颁布了《普通高等学校本科专业目录(2020年版)》,电气工程及其自动化专业为工学门类专业,专业代码为080601,属电气类专业,授予工学学士学位。
培养目标
培养具有工科基础理论知识和以电能生产、传输与利用为核心的相关专业知识,能够利用所学知识解决工程问题和构建工程系统,具有良好的社会道德和职业道德以及适应社会发展的综合素养,可以从事与电气工程有关的规划设计、电气设备制造、发电厂和电网建设、系统调试与运行、信息处理、保护与系统控制、状态监测、维护检修、环境保护、经济管理、质量保障、市场交易等领域工作,具有科学研究、技术开发与组织管理能力的高素质专门人才。
培养规格
课程体系
总体框架
电气工程及其自动化专业的知识体系包括通识类知识、学科基础知识、专业知识、实践性教学等。课程体系由学校根据培养目标与办学特色自主构建。构建电气类专业课程体系时,技术基础知识和专业基础知识必须达到对大部分核心内容的基本涵盖。课程名称不必与知识领域完全对应,可以将知识领域进一步划分并进行组合形成课程。
课程设置应能支持专业人才培养基本要求和培养目标的达成,课程体系构建过程中应有企业或行业专家参与。
理论课程学分不高于80%,实践课程学分不低于20%。在设置必修课保证核心内容的前提下,根据学校条件逐步加大选修课比例。
理论课程
(1)数学和自然科学类课程(至少占总学分的15%)。数学包括微积分、常微分方程、级数、线性代数、复变函数、概率论与数理统计等知识领域的基本内容。物理包括牛顿力学、热学、电磁学、光学、近代物理等知识领域的基本内容。根据需要可以补充普通化学的核心内容和生物学类基础知识;
(2)人文社会科学类课程(至少占总学分的15%)。通过人类社会科学教育,使学生在从事电气工程设计时能够考虑经济、环境、法律、伦理等各种制约因素。
工程基础类课程、专业基础类课程(至少各占总学分的20%),应能体现数学和自然科学在专业应用能力的培养。学校根据自身专业特点,在下列核心知识内容中有所侧重、取舍,通过整合,形成完整、系统的学科基础课程体系。
工程基础类课程包括工程图学基础、电路与电子技术基础、电磁场、计算机技术基础、信号分析与处理、通信技术基础、系统建模与仿真技术、检测与传感器技术、自动控制原理、电气工程材料基础等知识领域的核心内容。
专业基础类课程包括电机学、电力电子技术、电力系统基础、高电压技术、供配电与用电技术等知识领域的核心内容。
专业课程(至少占总学分的10%),应能体现系统设计和实现能力的培养。各高校可根据自身定位和专业培养目标设置专业课,与专业基础课程相衔接,构成完整的专业知识体系。
核心课程的名称、学分、学时和教学要求以及课程顺序等由各高校自主确定。以下为核心课程体系示例(括号内为建议学时数):
示例一:基本电路理论(64)、数字电子技术(48)、模拟电子技术(48)、嵌入式系统原理与实验(80)、电磁场(32)、信号与系统(48)、自动控制原理(32)、通信原理(48)、电气工程基础(96)、电机学(64)、电力电子技术基础(48)、数字信号处理(32)、电机控制技术(48)、电力系统继电保护(48)、电气与电子测量技术(32)、电力系统暂态分析(32);
示例二:电路理论(96)、工程电磁场(56)、模拟电子技术基础(56)、数字电子技术基础(48)、电机学(96)、电力电子技术(48)、信号分析与处理(48)、自动控制理论(48)、微机原理与接口技术(64)、电力系统分析基础(64)、电力系统暂态分析(32)、电力系统继电保护原理(48)、高电压技术(40);
示例三:电路原理(64)、模拟电子技术基础(64)、数字电子技术基础(56)、自动控制理论(62)、电机与电力拖动基础(62)、电力电子技术(48)、供电工程(48)、电器控制与可编程控制器(48)、单片机原理及应用(40)、电气测量技术(48)。
实践教学
工程实践与毕业设计(论文)至少占总学分的20%。应设置完善的实践教学体系,与企业合作,开展实习、实训,培养学生的动手能力和创新能力。
实践环节应包括:金工实习、电子工艺实习、各类课程设计与综合实验、工程认识实习、专业实习(实践)等。毕业设计(论文)选题应结合电气工程实际问题,培养学生的工程意识、协作精神以及综合应用所学知识解决实际问题的能力。对毕业设计(论文)的指导和考核应有企业或行业专家参与。
教学条件
教师队伍
专任教师数量和结构满足教学需要,生师比不高于28:1。新开办专业至少应有10名专任教师,在240名学生基础上,每增加25名学生,须增加1名专任教师。
专任教师中具有硕士、博士学位的比例不低于50%。专任教师中具有高级职称的比例不低于30%,年龄在55岁以下的教授和45岁以下的副教授分别占教授总数和副教授总数的比例原则上不低于50%,中青年教师为教师队伍的主体。
有企业或行业专家作为兼职教师,并有相关管理制度。
专业背景:大部分专任教师在其本科、硕士研究生或博士研究生的学历中至少有一个阶段是电气类专业学历,其他教师也应具有相关专业学习或进修的经历。
工程背景:专任教师应了解电气工程相关企业生产和技术发展现状,学校保证教师在教学以外有精力参加学术活动、工程实践,不断提升个人专业能力。主讲教师应具有工程背景,有企业工作经历或承担过多项工程项目的教师须占有相当比例。
设备资源
具有物理实验室、电工实验室、电子技术实验室、电气类专业基础和专业实验室,实验设备完好、充足,能满足各类课程教学实验和实践的需求。基础实验室满足2名学生一组实验的要求,专业实验室满足3名学生一组实验的要求,有特殊安全要求的实验除外。实验室有良好的管理、维护和更新机制,使得学生能够方便地使用。有与企业合作共建的实习和实训基地,能够在教学过程中为学生提供参与工程实践的平台。
计算机网络以及图书资料等资源能够满足学生的学习以及教师的日常教学和科研所需。资源管理规范、共享程度高。
教学经费
教学经费有保证,人均教学运行经费达到教育部的相关要求,经费总量能满足教学需要,专业生均年教学日常运行支出不低于教育部的相关要求。
学校能够提供实现专业培养目标所必需的基础设施,为学生的实践活动、创新活动提供有效支持。学校的教学管理与服务规范,能有效地支持专业培养目标的达成。
质量保障
各高校应对主要教学环节(包括理论课程、实验课程等)建立质量监控机制,使主要教学环节的实施过程处于有效监控状态;各主要教学环节应有明确的质量要求;应建立对课程体系设置和主要教学环节教学质量的定期评价机制,评价时应重视学生和校内外专家的意见。
各高校应建立毕业生跟踪反馈机制,及时掌握毕业生就业去向和就业质量、毕业生职业满意度和工作成就感、用人单位对毕业生的满意度等;采用科学的方法对毕业生跟踪反馈信息进行统计分析,并形成分析报告,作为质量改进的主要依据。
各高校应建立持续改进机制,针对教学质量存在的问题和薄弱环节,采取有效的纠正与预防措施,进行持续改进,不断提升教学质量。
培养模式
在学校电气工程及其自动化专业人才培养方案制定的过程中,要凸显校企耦合和产教融合的“双合”培养模式,把适应社会作为立足点,把理论学习切实融入到社会实践中。
第一,明确校企耦合的培养定位。定期派出学生到实践基地实习,重点培养学生解决实际问题的能力,进一步培养学生在项目建设、项目开发、系统研发中的能力,提高学生未来融入就业岗位的社会契合度。
第二,进一步明确产教融合的培养定位。在具体的课程教学环节中,把未来发展标准和课程内容融合、对接起来,把教学过程和生产过程融合起来,实行专业方向多样化的人才培养新理念和新模式。
第三,强化以学生为中心的培养定位。凸显学生在学习中的主体性,转变传统以教师为中心的教学方法,逐步向以师生互动、学生为中心转变,调动学生的积极性和求知欲望,激发创造力。
在电气工程及其自动化专业人才培养模式中,将专业教育定位为“应用工程师、研发工程师”的培养模式,并进行教学计划调整,突出验证、工程应用和创新实践的实践教学环节一条线的设计。以培养学生的创新能力为核心,提高学生的综合能力和尽快适应未来工作能力为目标,实现学生专业知识面的拓展、实践能力的增长、创新意识和创新能力的提高。
首先,结合课程和教师的情况选择部分课程开始进行与工程相结合的实验教学,积累经验总结教训,然后,逐步推广到全部课程;其次,提供一套合适的进行研究性教学和研究性学习的方法、实施办法和评价体系;最后进行研究性的学习创新实验的实践活动,在实验室条件的最大限度下,提高学生的创新能力。在此基础上,进一步开展产学研合作教育,拓展校外实习基地,保证社会实践、生产实习的顺利进行,形成校际合作、校企合作的新机制。
以学生综合素质、专业知识、专业能力和实践能力的培养为主线,建立课程关联图、课程与毕业能力要求的关系矩阵图。邀请企业行业专家全过程参与人才培养方案的制定。构建面向应用、能力为重、理论和实践深度融合的课程体系。为不同来源、不同兴趣取向、不同发展规划的学生制定多样化的培养方案。
打造电气专业实验教学体系,使学生从入校到离校进行四个层次训练:第一层次为电气工程强弱电设计、施工的基础训练,完成电工基础,电子技术能力的设计、制作培训;第二层次为以设计、施工和验收规范为导向建立专业课程设计训练,熟悉专业课程的实际应用,同时采用PLC控制的软硬件或嵌入式控制系统设计实现工程应用;第三层次为以大学生全国竞赛为龙头的智能制造创新训练,打破专业年级概念,依托电气专业科协等学生团体实现创新机制的落实;第四层次为在准工程师技能培养体系中的毕业设计、毕业实习等环节邀请企业专家作为指导老师对学生进行指导,使学生从学校学习到企业工程设计和应用做到无缝连接。
(1)创新教育理念,实现以创新创业为引导的专业教育。在“双创”价值理念的引导下,民办院校电气工程及其自动化专业须转变理念,建立以“双创”为引导的教育。
(2)创新教育方法,完善以学生为主体的教学模式。其一,转变教学方式,转变以教师为中心的知识传授方法,逐步向以师生互动、学生为中心转变,调动学生的积极性和求知欲望,激发创造力;其二,凸显实践教学方法。有效整合校内、校外实践基地,多层面、多角度提高学生在电气工程专业方面的实践水平,提高学生的创新能力;其三,实现课程设置的优化和创新。提高实践教学在课程教学中的比例,让学生具备从设计、制作、调试直到测试过程的能力。
(3)在“双创”战略的引导下,优化教师队伍,强化“双师型”教师团队建设。
发展前景
人才需求
电能是最便于利用的能源形式之一,电力及相关工业是国民经济的支柱产业。进入21世纪以来,我国正处于工业化和信息化并存的快速发展阶段,经济社会发展对电力的需求仍在不断增长,电力及相关工业发展潜力巨大。在可以预见的将来,电力及相关工业人才需求旺盛。
考研方向
可报考电气工程及相关学科的学术学位硕士研究生和博士研究生。
就业方向
学生毕业后可能够从事电力、电气设备制造行业内电气工程及其自动化领域相关的工程设计、生产制造、系统运行、系统分析、技术开发、教育科研、经济管理等方面工作,亦可从事其他行业电气工程及其自动化领域相关工作。就业范畴举例如下:
(1)从事电力系统的设计、研发和运行管理等工作,可从事单位主要有:国家电网南方电网两大电网公司下属的各级电力公司和国家五大发电集团及中核集团、中广核集团等下属的各类发电厂;各级电力设计院、电力规划院;电力建设公司;各类电力技术专业公司;新能源发电企业;能源、航空、航天、冶金、有色、石化、船舶、电子、医药、机械、建筑等大中型企业的供电部门或自备电厂;
(2)在电气设备制造企业、电力自动化设备公司、电力电子、通信等高新技术企业从事技术研发、管理和运营工作;
(3)在科研院所和大专院校从事科研和教学工作。
开设院校
参考资料
最新修订时间:2024-12-23 14:30
目录
概述
发展历程
参考资料