生物玻璃(bioglass) 是指能实现特定的生物、生理功能的玻璃。将生物玻璃植入人体骨缺损部位,它能与骨组织直接结合,起到修复骨组织、恢复其功能的作用。生物玻璃是
佛罗里达大学美国人 L.L.亨奇于 1969 年发明的。其主要成分有约占45%Na2O、占25%CaO与25%SiO2和约占5%P2O5。若添加少量其他成分,如K2O、MgO、CaF2、B2O3等 , 则可得到一系列有实用价值的生物玻璃。用这种玻璃来造人体骨比某些金属要优越的多。
简介
生物玻璃已成为材料科学、生物化学以及分子生物学的交叉学科,由于生物玻璃具有
生物活性等特点,在
组织工程支架材料、骨科、牙科、中耳、癌症治疗和药物载体等方面的应用
前景可观。主要由Si、Na、Ca 以及P 的氧化物组成。
适用原因
亨特教授曾把这种生物玻璃做成猴子大腿骨,植入猴子体内,经过一定时间。后来又从猴子体内取出大腿骨进行观察,发现再生的骨细胞已经长入生物玻璃骨内的网状结构内,混成一体。经力学实验证明,这种人造骨比原骨要结实得多。
生物玻璃之所以适用,原因是它的配料成分是仿生的,经过配料进行化合反应后,会生成一种新成分叫羟基磷酸钙Ca5(PO4)3(OH)。这种成分就是人和动物的骨头的构成成分。
制法
生物玻璃的制法与工业玻璃类似,在1400℃左右高温下熔制,均化后浇注到不锈钢模具中成形 ,退火后即得到其制品。由于生物材料的特殊要求,制备生物玻璃须采用
高纯试剂作原料,以铂坩埚为容器,尽可能减少杂质混入。由于生物玻璃
化学稳定性差,易与环境中的水分反应,因此在加工、灭菌和保存中,须保持干燥,防止变质。生物玻璃的机械强度低,只能用于承力不大的体位,如耳小骨、指骨等的修复。将生物玻璃涂敷于钛合金或不锈钢表面,在临床上可制作人工牙或关节。
主要用溶胶凝胶制备,这样能很好的保留其生物活性。
生物玻璃的增韧
1.自增韧
由适当组成的玻璃通过控制结晶化制成微晶化玻璃,又称
玻璃陶瓷。通过新晶相的析出来提高材料的机械强度。如小久保正的A-W
微晶玻璃,通过第二相硅灰石的析出提高了材料的机械强度,而没有降低材料与骨结合的能力。可切削加工玻璃陶瓷则是通过向含磷灰石微晶的玻璃中引入能析出氟金云母的成分,大大改善了
玻璃陶瓷材料的可切削加工性能。自增韧技术的采用在一定程度提高了玻璃材料的某些力学性能,为实现临床应用带来了可能。
2.颗粒增韧
利用生物玻璃或陶瓷与其他颗粒相复合的方法提高整体材料的强度,复合方式有多种,可分为:
①与活性生物颗粒相复合,作为增强相与轻基磷灰石相复合。
②与生物惰性颗粒相复合。选择具有生物活性的生物玻璃为母材与其他惰性颗粒组成复合材料,从而保存活性提高强度和韧性。
3.纤维增韧
碳纤维、
碳化硅纤维及
金属纤维都被用于生物玻璃陶瓷材料的补强增韧,如将碳纤维切成一定长度的小段,并以水为介质与磷酸钙充分混合,将得到的浆料球磨混合后真空热压烧结,制得的复合材料最终抗弯强度为23.6MPa,拉伸变形率为0.36%,提高了材料的韧性。
4.层状复合增韧
层状复合增韧的核心是将
结构陶瓷中的层状增韧机理引入生物材料。用生物活性材料(生物玻璃或HA)为基体材料,引入碳素等延性材料作为夹层材料,制备胚体,该胚体在氮气保护下热压烧结,得到基本致密的块体,其断口为阶梯状断裂,表明复合陶瓷整体在达到最大载荷点后失效不是突变的,而是裂纹在石墨层中扩展,并逐步被吸收,呈Z状扩散,因而避免了脆性断裂。
生物玻璃加涂士医用金属等的基底上形成的一种涂层材料,其目的在于利用生物玻璃与骨键合的生物活性以及金属的高强度,构成可承受负载的骨和牙等硬组织替换材料。功能梯度涂层即通过增加过渡性涂层,缩小基体与活性涂层间热膨胀性能的差异,从而增强两者之间的结合力,取得了一定的效果。
生物玻璃的应用
1.生物玻璃在牙科治疗中的应用
生物玻璃自1985年开始应用于临床修复骨、关节软骨、皮肤和
血管损伤。人工中耳骨MEP是生物玻璃材料最早产品,它既可与软组织(耳膜)连接,又可与骨连接,临床结果显示较好于其他
生物陶瓷和金属材料。第二代生物玻璃材料 ERMI可用于填补牙根空位,避免牙床萎缩。ERMI与牙床骨连接紧密,较之预防牙床萎缩的其他材料有更好的疗效。第三代生物玻璃材料早期产品PerioGlas,主要用于牙周疾病所致骨缺损重建和拔牙后局部填充。长期临床研究显示,PerioGlas临床效果良好,对人体无不良反应。含50%磷酸的生物玻璃可用于治疗
牙本质过敏和早期釉质龋齿。原因是生物活性玻璃微粒由于与其植入髓室穿孔处与血液及牙槽骨骨组织接触时,可在瞬间与组织间发生复杂的离子交换,在生物玻璃表面形成富硅凝胶层,并聚集形成碳酸
羟磷灰石层,通过钙磷层的快速形成并沉积在穿孔区牙周组织内,最终钙化,形成牙骨质和牙周新附着。Bakry等研究含50%磷酸的生物玻璃,结果显示其生物相容性良好,是一种安全的生物材料。
2.生物玻璃在骨骼修复中的应用
生物玻璃在牙科疾病预防和治疗中取得良好临床效果后,随即也应用于骨科,其产品有固骼生(NovaBone)。生物玻璃力学强度较差,主要用于非承重部位骨缺损修复。由于生物玻璃表面在人体的生理环境中可发生一系列的化学反应,并可直接参与人体骨组织的代谢和修复过程,最终可以在材料表面形成与人体相同的无机矿物成分——碳酸
羟基磷灰石)]CO,(2OH)(PO-[CaO-23-6410,并诱导骨组织的生长,所以可用于人体骨缺损的填充和修复。Ameri等报道在青少年
特发性脊柱侧凸患者后路脊柱融合矫形术中分别采用生物玻璃和自体髂嵴骨移植,术后平均随访34.7个月(最短24个月)发现,生物玻璃组临床效果与自体髂嵴骨移植组相同,且可减少自体髂嵴骨移植所带来的并发症。Seddighi等报道在颈椎病前路融合术中采用填充生物玻璃和自体骨的钛网,平均随访14.3个月显示,其脊柱融合率与仅填充自体骨的钛网相比基本相同。
3.生物玻璃在药物载体方面的应用
药物治疗载体也是生物玻璃最有前景的应用之一。各种各样的药物储存在多孔的生物玻璃中,然后植入人体的有关关键部位,随着生物玻璃表面反应的进行,药物将释放,达到有的放矢的治病目的,与传统的注射方法相比,有均匀、长时间治疗等众多的优点,有最大效率的疗效。
4.生物玻璃在创口愈合中的应用
生物活性玻璃用于促进伤口的愈合也是当今的一个研究方向。国内外的一些专利对此均有涉及。如美国的D.C.格林斯潘等就在其专利中介绍了一种用于加速创伤和烧伤愈合的组织物,其中就包含有活性玻璃。生物活性玻璃的加速促进创口愈合的机理为:当该材料植入人体内,在体液的作用下,Na、2Ca等活性大的离子首先溶出,体液中的H进入玻璃表面形成Si-OH,然后由于Si-O-Si键破坏,无规网络被溶解,可溶性硅以硅醇形式被放出,并且迅速在材料分体表面形成一个羟基磷灰石胶结层。可溶性硅有分子水平结缔组织的代谢作用和结构作用,生物玻璃溶解后,局部Si浓度的升高可促进细胞新陈代谢的细胞内部相应,激发促创伤愈合因子的自分泌反应,参与创伤修复的所有细胞在促创伤愈合因子的自分泌反应,参与创伤修复的所有细胞在促创伤愈合因子的刺激下加速生长和分裂,并聚集于材料表面形成的羟基磷灰石胶结层,使新生组织能整个创面顺利爬移和覆盖。