环境电磁学
环境物理学分支学科
环境电磁学是环境物理学中新形成的一个分支学科,主要研究各种电磁污染的来源及其对人类生活环境的影响。电磁污染是指天然的和人为的各种电磁波干扰和有害的电磁辐射。
简介
环境磁学兴起于20世纪70年代,是一门介于地球科学环境科学磁学之间的边缘学科。其原理是测量土壤、岩石沉积物等自然物质和人类活动产生的物质在人为磁场中的磁性响应,提取地理环境的信息。由于系统磁性测量技术本身的优点,高灵敏度测试仪器,以及计算机处理磁测数据,使环境磁学广泛应用于湖泊及流域古地理研究、土壤形成和分类、黄土——古土壤研究和环境污染研究等许多研究领域。未来环境磁学有一些新的发展趋势。
基本原理
环境磁学的原理就是通过对环境物质,如土壤、岩石、湖泊和海洋的沉积物、火山灰、大气尘埃等自然物质,以及人类活动所产生的物质,如化石燃料燃烧后释放的微粒等的磁性测量,并通过模拟实验与相关研究的对比加以映证,了解环境物质中磁性矿物的含量、类型和运动,然后反推地理环境演变过程,提取地理环境变化信息,了解自然过程和人类活动对地理环境的影响,预测地理环境长期变化的趋势,为创造环境监控新手段、制定环境控制战略提供新的依据。
研究对象
任何物质都有磁性,自然界中颗粒物的磁性主要是由矿物产生的,矿物的磁性行为通常分为顺磁性抗磁性亚铁磁性和不完整反铁磁性等几种基本类型。抗磁性矿物如石英方解石,可在外加磁场中获得与外加磁场方向相反的磁性,这种磁性很弱而没有剩磁。它是几种磁性行为中最弱的,因此在大多数情况下被其他磁性行为所掩盖。顺磁性矿物可在外加磁场中获得与外加磁场方向相同的磁性。这种弱同向磁性在去除外加磁场之后立即消失,因此没有剩磁。更强的磁性行为通常掩盖了顺磁性。在环境磁学中主要研究的几种天然矿物的磁性,是铁磁性的特殊变种,包括亚铁磁性和不完整反铁磁性。亚铁磁性矿物,如磁铁矿(Fe3O4)和磁赤铁矿(ΧFe2O3),不仅能在外加磁场中获得很强的磁性,而且这种强磁性在去除外加磁场之后部分地被保留下来,称为剩余磁化强度(简称剩磁)。通常,样品中低浓度的亚铁磁性晶体主导其磁性特征;不完整反铁磁性矿物,如赤铁矿(ΑFe2O3)和针铁矿(ΑFeOOH),能在外加磁场中获得比较弱的同向磁性,而且与亚铁磁性矿物一样也能保留剩磁。事实上,岩石、大气微粒、土壤和沉积物等环境物质的磁性测量所得的总磁矩,是样品抗磁性、顺磁性、反铁磁性和亚铁磁性矿物磁矩的总和。
研究基础
自然物质和人类活动所产生的次生物质,往往表现出不同的磁性特征。这些磁性特征与它们包含的磁性矿物数量和类型、铁磁性结晶晶粒大小及其配比有关。环境磁学研究的基础就是通过系统磁性测量,揭示物质中磁性矿物的类型、含量和晶粒组合特征,从中提取环境及其演变的信息。大量样品的磁性测量表明,含量不高的亚铁磁性矿物在很大程度上决定了物质磁化率的测值。如磁性矿物(主要是Fe3O4)含量为48144Λg?g的粉煤灰样品,其质量磁化率(X)达27177Λm3?kg,饱和等温剩磁(SIRM)为571313ΛAm2?kg[1]。环境物质中磁性矿物的铁磁结晶晶粒的大小(用磁畴来表示)同样表现出磁性特征的差异。对于磁铁矿而言,一般粒径在1~2Λm以上多畴为(MD)晶粒,0105~1Λm为假单畴(PSD)晶粒,0105Λm上下的晶粒具有单畴(SSD)性质,0102Λm左右呈细粘滞性(FV)特征,01001~0101Λm以下为超顺磁(SP)晶粒。通过磁参数的综合测试和比较计算,可以分辨铁磁晶粒的组成和差异。如,非滞后剩磁ARM?X与软等温剩磁IRMS?X结合可以确定稳定单畴(SSD)磁铁矿的存在和含量,而IRMS?ARM可以了解样品中多畴(MD)成分磁铁矿的存在状态等亚铁磁性矿物(如磁铁矿、磁赤铁矿、磁黄铁矿等)和不完整反铁磁性矿物(如赤铁矿和针铁矿等)是环境磁学最为关注的矿物类型。亚铁磁性矿物一般经过小于011T的磁场磁化以后即可获得95%以上的饱和等温剩磁,其矫顽力也较低,磁铁矿约为20mT左右;而不完整反铁磁性矿物要在4~7T的强磁场中磁化后,才能获得饱和剩磁。软等温剩磁。
发展历程
20世纪70年代初期,英国环境生态学家F1Oldfield教授和物理学博士R1Thompson,在研究北爱尔兰LoughNeagh湖时,发现了湖泊沉积物样芯的磁化率曲线与其孢粉组合类型相吻合的现象,进而认识到:有可能通过湖泊沉积物非天然剩磁的磁性测量,结合生物化学指标,提取高分辨率的环境变化信息。其后,F1Oldfield和R1Thompson的长期合作研究以及其他先驱者的研究,为这门新的学科奠定了基础。80年代以来,随着电子技术和计算机科学的发展,用于野外和实验室的高灵敏度磁性测量仪器的问世,大大提高了磁性测量的精度和分辨率,形成了一整套野外磁测踏勘、样芯磁性扫描、实验室整样磁性测量及粒度组分磁性测量的工作程序。由于磁性测量具有简便、快速、经济、无破坏性和多用性等优点,因而受到世界许多科学工作者的重视。
综合应用
综合应用地质学、磁学、地理学、生态学、水文学、气象学、冰川学、考古学、湖泊学和海洋学等多学科知识,研究环境问题。简言之,环境磁学研究环境中物质的磁性及其与环境问题之间的联系。
其他应用
环境磁学在地理环境研究中的应用
环境磁学自20世纪70年代兴起以来,在欧洲、澳洲、北美、南亚和北非许多国家和地区的环境研究中得到重视,应用领域迅速扩大。环境磁学的研究已遍及全球各主要气候带和地质岩性区域,涉及到不同类型的湖泊、沼泽、河流和海洋环境系统。磁测的对象不仅有海洋和湖泊沉积物样芯、河流的悬移或推移质,也包括了不同区域的土壤剖面、黄土剖面序列、大气尘埃、冰碛物、岩芯和冰芯等。应用领域推广到区域和全球变化研究,区域环境污染监测和污染历史研究,流域侵蚀和沉积研究,人类活动对地理环境影响研究,环境考古,石油勘探等。
研究湖泊沉积物以恢复流域古地理环境湖泊沉积物的来源是多种多样的,由于各种来源的物质具有不同的磁性特征,并在一定程度上保留了原有的磁性,因而湖泊沉积序列的磁性变化模式能综合地反映沉积物质的来源及其配比。
环境事件的指示研究表明,在连续的常态湖泊沉积序列中,可能夹带着一层或多层磁性极端异常的沉积层,它们往往指示了流域或临近区域的某些环境事件。如森林、草场火灾会导致表土层磁性的明显增强,这些物质由径流带入湖泊,在沉积序列中保留了火灾事件的“痕迹”。F1Oldfield等通过磁性测量鉴别出巴布亚新几内亚高原四次火山喷发事件。俞立中等在苏北兴化的湖泊沉积物研究中,从沉积物的磁性异常揭示了历史洪水事件,并通过相关研究得到证实。
对流域环境变迁的分析利用湖泊沉积物的磁信息可以揭示流域环境变化的过程和机制。中国云南滇池沉积物的磁性研究表明,在具有稳定的森林植被覆盖的地区,气候变化仍然可以从湖泊沉积物的磁性特征上反映出来。吴瑞金认为,湖泊沉积物的磁化率、频率磁化率可以作为映古气候、古环境变化的灵敏间接指标。胡守云等指出,磁化率可以作为一个反映环境变化的代用指标,高(低)频磁化率相应指示湿润(干旱)的气候,较高(低)的湖面。张振克等研究认为:历史时期内陆封闭湖泊沉积物频率磁化率高值段指示气候偏湿阶段;低值段指示气候干旱阶段;俞立中等对太湖的沉积物环境磁学研究揭示了由气候变化引起的太湖水位升降旋回。J1Dearing等在Peris湖的环境磁学研究,不仅发现了由于过度放牧引起的表土流失,而且解释了流域土地利用变化的历史过程。俞立中等提出利用湖泊沉积物磁信息判别物质来源的定量分析方法,并成功地应用于流域环境研究。
对土壤形成和土壤分类的研究土壤磁学是本世纪70年代末建立的新的研究领域,其基本原理是土壤中的铁能改变价态、形成与环境有关的多种氧化相或与土壤中其它成分一起形成络合物。土壤中铁的化合物状态常常指示土壤水分状况、形成过程和土壤类型。各种土壤的磁测表明,在土壤环境类型和磁学性质之间存在着清楚的关系。土壤磁学的任务是对土壤剖面进行常规勘探和描述;研究土壤的形成过程,对土壤进行分类、分层,标识不同的成土过程。未来土壤磁学的应用包括几个方面:土壤基本磁性、氧化物和发生研究、土壤地理、土壤调查、土壤磁法改良、土壤结构研究、土壤侵蚀状况等。
研究黄土——古土壤序列探索古气候变化规律磁化率曲线已用来建立不同地区黄土剖面的相应层位联系,并对照深海沉积物和极地冰芯中提取的古气候演变信息,以揭示全球古气候变化规律。黄土的磁化率之所以能够很好地反映气候变化,是因为在大范围内,可以认为黄土的沉积环境变化不大,磁化率的高低主要决定于成土作用及其细小磁性物质产生的多少。通过对黄土剖面的磁化率频率系数及其它磁参数的测量,以及对各个粒级的黄土、古土壤磁性特征的对比研究,已认识到黄土和古土壤中铁磁晶粒的大小构成和组合存在着明显差异,反映出在不同气候条件下成土作用的强弱对黄土剖面磁性差异的重要影响。FriedrichHeller等对陕西洛川黄土的研究,指出天然剩磁(NRM)和磁化率的强度变化对黄土沉积期间的气候变化具有指示性。大量研究表明黄土堆积时期气候干冷,古土壤形成时期气候暖湿,黄土的磁化率低,古土壤的磁化率高。
环境污染研究环境磁学主要监测现代环境污染、重建污染历史、以及典型地区的污染等几个方面。根据JohnDearing的资料,磁性测量已经被用来识别来自化石燃料燃烧、汽车、表面建筑材料、钢铁制造和其他金属冶炼所释放的颗粒物。根据湖泊和水库沉积物、泥炭沼泽,甚至有机质枯落层的磁性分析,许多研究已经重建了大气污染的历史。T1M1Williams采用磁化率曲线,对比沉积物中重金属化学分析和1820年以来欧洲煤炭燃烧的资料,得出低频磁化率(xlf)与Pb,Zn和Cu高度相关(相关系数大约为018),并与历史上欧洲煤炭消耗有相同趋势的结论。BeckwithP1R1等完成了城市来源的沉积物重金属和磁性关系研究。F1Oldfield等对芬兰泥炭剖面的研究,指出磁性颗粒的大气污染降落物从1860年(大约工业革命开始的时候)加速增加,到第二次世界大战以后达到峰值。该项工作为颗粒物大气污染环境磁学研究提供了一个有用的途径。长江口潮滩沉积物的磁性研究指出,沉积物的磁参数值与重金属元素含量相关,并与粒度组成有关。磁性测量可为大城市及其临近的河口海岸环境监测提供有效手段和重要依据。
存在问题
环境磁学存在的主要问题
环境磁学是依赖自然系统内在的秩序认识环境的新方法,所以得到广泛重视。然而,由于地理环境千差万别,磁性矿物对环境变化的敏感性,磁参数解释的多义性等,使得环境磁学仍然存在一些问题,如对于不同粒径和类型磁性矿物的磁参数贡献,磁性矿物在环境中的迁移转化,及磁信息的定量及数据库建设方面,还有很多工作要做。实践证明,环境磁学是一门富有生命力和广阔应用前景的学科。
发展趋势
环境磁学发展趋势
环境磁学有几个新的发展趋势。首先更加注重机理研究,卢升高等对云南和浙江玄武岩上发育的土壤进行磁性测量和X-射线衍射分析,从铁磁性氧化铁矿物学角度解析土壤磁化率的机理。朱立军等用多种先进的分析观察方法研究了碳酸盐岩发育土壤中磁性矿物的形成机理。A1J1Wheeler和F1Oldfield等研究了影响爱尔兰西北海岸沉积物磁性发生和保持的过程,指出生物作用和成岩过程对磁性记录的保持有强烈的影响。董瑞斌从机理上研究了还原作用下红壤磁性的稳定性,并对影响因子之间的关系进行了量化。其次应用于生产实践的方向。张卫国,俞立中等[44]对东海陆架表层沉积物的磁性测量表明,磁测可以作为油气勘探的间接手段。重金属污染也是重要应用领域,H1Yang等对武汉东湖的研究,张卫国,俞立中等对长江口南岸潮滩沉积物的研究,S1M1Hutchinson,和L1Yu对于长江口潮滩重金属污染的研究,表明环境磁学应用于重金属污染研究有重要意义。第三,定量化是环境磁学的学科要求,成为研究趋势之一。俞立中在这方面作了许多工作,董瑞斌在工作中也应用了定量方法。王建等建立了磁化率与磁铁矿百分含量之间的回归方程。第四,湖泊和深海沉积物研究是应用磁测技术研究区域气候变化乃至全球环境变迁的有效方法之一。孙知明等和王慧中等人[51]的工作具有代表性。最后,环境磁学与多学科的分析测试技术的结合,在这方面A1J1Plater等利用地球化学和放射性核素,结合磁性测量研究河口地区污染的工作具有典型意义。
参考资料
最新修订时间:2024-05-21 11:21
目录
概述
简介
基本原理
参考资料