猴子和打字机(Monkeys and Typewriters),如果无数多的猴子在无数多的打字机上随机的打字,并持续无限久的时间,那么在某个时候,它们必然会打出莎士比亚的全部著作。猴子和打字机的设想在20世纪初被法国数学家Emile Borel推广,但其基本思想——无数多的人员和无数多的时间能产生任何/所有东西——可以追溯至亚里士多德。
简单来说,“猴子和打字机”定理是用来描述无限的本质的最好方法之一。人的大脑很难想象无限的空间和无限的时间,
无限猴子定理可以帮助理解这些概念可以达到的宽度。猴子能碰巧写出《哈姆雷特》这看上去似乎是违反直觉,但实际上在数学上是可以证明的。这个定理本身在现实生活中是不可能重现的,但这并没有阻止某些人的尝试:2003年,一家英国动物园的科学家们“试验”了无限猴子定理,他们把一台电脑和一个键盘放进灵长类园区。可惜的是,猴子们并没有打出什么
十四行诗。根据研究者观察,它们只打出了5页几乎完全是字母“s”的纸。