为了解煤的质量和燃烧特性,用物理和化学的方法对煤样进行的化验和测试工作。煤质分析按国家技术标准或专项试验工艺进行,它是为有关设备和工艺过程的设计和运行提供依据的基础性工作。根据测定项目的不同,煤质分析可以分为常规分析和特种分析(或称非常规分析)两大类。
常规分析
通常是指按照国家技术标准测定煤炭的基本物理、化学特性的分析项目,主要有工业分析、
元素分析、灰成分分析,煤、煤粉和灰分性质的测定等。
工业分析
包括对水分、挥发分、固定碳和灰分的测定,有时还包括硫分和发热量等项数据的测定。
元素分析
测定煤中有机质的碳、氢、氧、氮和可燃硫等主要元素组分,以质量百分数表示,收到基中连同水分和灰分总和为100%。
成分分析
煤中的水分和灰分含量常随开采、运输、贮存及气候条件而异,其他成分的含量也将随之发生变化,为了便于生产和科研,通常采用四种成分分析基准:①收到基:以收到状态的煤为基准的表示方法;②空气干燥基:以空气干燥状态的煤为基准的表示方法;③干燥基:以无水状态的煤为基准的表示方法;④
干燥无灰基:以假想的干燥无灰状态的煤为基准的表示方法。
除水分和
低位发热量以外,不同基准成分数值间的换算系数见表1。
成分特性
灰分是由金属氧化物和
非金属氧化物及其盐类组成的复杂物质,以SiO2和Al2O3为主,还有Fe2O3、CaO、MgO、TiO2、SO3、Na2O和K2O等,以及一些Mn、V和Mo等元素的氧化物。
(1)灰成分测定:按工业分析条件灼烧煤样制得灰样,用NaOH溶融,沸水浸取,加HCl溶解,蒸发至近干,再制备试液。不同成分用不同方法测定,如,SiO2用动物胶凝聚质量法,Fe2O3、Al2O3、CaO和MgO用EDTA容量法,Na2O和K2O用
火焰光度法,P2O5用比色法等,还可以用
原子吸收光谱法来测定除磷以外的其他灰成分。
(2)灰的熔融特性:通常称为灰熔点,煤灰没有固定的熔化温度,仅有一个熔化温度范围。中国和世界上大多数国家以角锥法作为标准测定方法,记录在半还原气氛中的三个特征温度:变形温度DT,即灰锥尖开始变圆或弯曲时的温度;软化温度ST,即灰锥体弯曲。
表1 不同基准成分数值间的换算系数
注: 表中M表示水分,A表示灰分。
到锥尖触及托板或锥体变成球形和高度不大于底长的半球时的温度;流动温度FT,即灰锥完全熔化或展成高度≤1.5 mm薄层时的温度,也称为熔化温度。有的国家用热显微镜观测柱体试样的熔融特征来确定其特征温度。
(3) 灰黏度: 表征灰在高温熔融状态下的流动特性,通常根据牛顿摩擦定律用钼丝扭矩式黏度计测定1750℃以下1~10 Pa·s范围内的熔体黏度。
煤粉性质
煤是一种成分、结构非常复杂且极不均一,包括有机和无机化合物的混合物,以及无机物和有机质组成的金属
有机络合物,其性质是多方面的,其中与燃烧关系较密切的有可磨系数、磨损指数、
煤粉细度、密度、
自由膨胀序数五项。
(1)可磨系数:表征煤被粉碎的难易程度,测定的依据是破碎定律,即在研磨煤粉时所消耗的能量与新产生的表面面积成正比。广泛采用的主要方法有哈德葛罗夫 (Hardgrove) 法与全俄热工研究所(ВТИ)法,其近似换算关系为:KВТИ=0. 0034(K)+0.61。
(2)磨损指数:表征煤在破碎过程中对金属研磨部件磨蚀的强烈程度,现多使用YGP (Yancey,Geerand Price)法来测定在规范条件下煤样对纯铁的磨损量。
(3)
煤粉细度:煤粉是由各种尺寸不同(一般在1~500 μm)、形状不规则的颗粒所组成,其细度一般用标准筛来测定,以筛孔尺寸为x (μm) 的筛子筛后剩余量占粉样的百分数Rx(%)来表示。
(4)密度:煤的密度通常以不同的方式表示,有真密度、视密度和堆积密度之分。真密度是在20℃时,煤的质量与同温度、同体积(不包括煤内外表面孔隙)水的质量之比;视密度为在20℃时,煤的质量与同温度、同体积(包括煤内外表面孔隙)水的质量之比,又称为假密度;煤粉堆积密度是煤粉在自然堆积状态下的视密度。
(5)
自由膨胀序数:表征煤的黏结特性,把煤按规定方法加热,所得焦块与一组标准焦块侧面图进行比较来确定的序号数。
特种分析
又称非常规分析,是测定表征煤着火、燃尽、结渣和积灰等特性的专项分析。国际上已有基本定型的试验工艺,但尚未形成技术标准。特种分析是通过专门的试验装置、使用先进的仪器或对常规分析数据进行处理来实现的;当前主要有以下几种测定项目,即煤粉着火指数、热(重)分析、比表面积测定、热解化学动力学常数的测定、焦燃烧速率系数的测定、结渣倾向判别、沾污特性的判别。
煤粉着火指数: 着火温度不是煤所固有的物理化学参数,而是一个和试验规范有关的参数。通常取能使煤粉在试验炉膛中悬浮着火的最低温度为着火指数,用来比较煤粉着火的难易程度。
热分析
在程序控制和缓慢升温下,测量煤样的质量随加热程度的变化,称为煤的热(重)分析,所用的仪器称为热天平。美国材料分析标准(ASTM)中有用热天平进行微量煤样工业分析的工艺;世界各国都在使用热天平对煤的燃烧特性进行试验研究,主要使用焦燃尽曲线、煤热解或燃烧曲线两类热分析曲线。
(1)焦燃尽曲线:用来比较固体燃料燃尽的难易程度,是以专项工艺制备焦样,在热天平中做等温热重分析来绘制的。
(2)煤热解和燃烧曲线:煤样在惰性气氛或含O2气氛中热分析的微商热重曲线 。燃烧特性不同的煤,热解或燃烧曲线相差较大;燃烧特性相似的燃料,热解或燃烧曲线相近。中国倾向于在曲线上取“着火点”、“最大燃烧速度”、“燃尽时间”等特征点来比较煤的燃烧特性。
表面积测定
在气固两相反应中,单位质量试样的表面积(包括内孔表面)——比表面积可作为直观反应活性的一种简单度量。煤是多孔物质,释放挥发分后的焦更是典型的多孔物质。通常以N2在77K时的吸附量,用
BET方程来给出煤样或焦样的比表面积,也有的以CO2在298K时的吸附量,用Dubinin Polngi方程来给出试样的比表面积。也有用压汞法测得孔隙面积来表示比表面积。
常数测定
煤在不同的热力工况下热解,释放的挥发分成分和数量亦不相同。对应于层式燃烧、流化床燃烧和煤粉悬浮燃烧的热力条件,煤的热解动力学参数可分别用热天平 (温升速率<102K/s),居里点热裂解色谱法 (煤的温升速率约为103K/s)和管式沉降炉热解试验(煤的温升速率>10 K/s) 来测定。
居里点热裂解色谱法是高频磁场使铁磁丝迅速受热,涂在丝上的煤粉试样亦迅速升温,丝达到居里点后失磁恒温,载气将煤热解释放出的挥发分迅速冷却,并收集入贮气器,既可以测定热解失重率,也可用色谱仪检测热解气态成分的数量。
管式沉降炉热解试验是连续将煤粉试样供入高温管式电炉中,在沉降过程中随惰性载气将煤粉试样高速升温,快速热解,以水冷取样管将带粉气流迅速冷却,用在线气体分析仪检测挥发分某些成分的数量,并用取出的焦样由灰示踪法确定挥发分产率,进而可算出煤热解频率因子和活化能。
焦燃烧速率系数的测定
焦是指煤释放挥发分后的剩余物,其燃尽时间一般占煤燃尽时间的90%以上,其燃烧速率与煤在炉膛中的燃尽率关系较密切。焦在管式沉降炉的高温燃烧气氛中燃烧,水冷取样管将试样迅速冷却,不同温度、不同燃烧时刻的残存焦样,用灰示踪法即可得出燃尽率,进而可得出视在燃烧速率系数Kc=Acexp (—Ec/RT)中的频率因子Ac和活化能Ec,从而为计算煤在炉膛中的燃烧过程提供基础数据。
结渣倾向判别
结渣是指熔化了的灰沉积在受热面上,它与煤的灰渣特性、燃烧工况和壁面温度等多种因素有关。通常认为煤的结渣倾向与灰分的熔融性,流变特性(黏温特性)等有关,工业部门常使用的预测指标有软化温度判别指标、常用的结渣指数、煤粉重力筛分试验三种。
煤沾污特性的判别
沾污是指温度低于灰熔点的沉积物积沉在锅炉受热面上。通常用来判别煤灰沾污倾向的方法有沾污指数RF、重力筛分试验、弱酸溶碱试验、测定煤灰的烧结强度等四种。
分析设备