热释电效应是指极化强度随温度改变而表现出的电荷释放现象,宏观上是温度的改变使在材料的两端出现电压或产生电流。热释电效应与压电效应类似,热释电效应也是晶体的一种自然物理效应。
具有热释电性质的材料称为热释电体。
压电陶瓷属于热释电体。若不考虑温度的不均匀性,热释电体一般具有一级和二级热释电效应。其中二级热释电效应是由于温度变化引起材料形变,再由压电效应产生电荷的二级效应。一般情况下,若温度变化率相同,升降温过程中产生的热释电电荷大小相等,但符号相反。
热释电效应最早在电气石晶体(Na,Ca)(Mg,Fe)3B3Al6Si6(O,H,F)3中发现,该晶体属三方晶系,具有唯一的三重旋转轴。与压电晶体一样,晶体存在热释电效应的前提是具有自发式极化,即在某个方向上存在着固有电矩。但压电晶体不一定具有热释电效应,而
热释电晶体则一定存在压电效应。热释电晶体可以分为两大类。一类具有自发式极化,但自发式极化并不会受外电场作用而转向。另一种具有可为外电场转向的自发式极化晶体,即为铁电体。由于这类晶体在经过预电极化处理后具有宏观剩余极化,且其剩余极化随温度而变化,从而能释放表面电荷,呈现热释电效应。
通常,晶体
自发极化所产生的束缚电荷被空气中附集在晶体外表面的自由电子所中和,其自发极化
电矩不能显示出来。当温度变化时,
晶体结构中的正、负电荷重心产生
相对位移,晶体自发极化值就会发生变化,在晶体表面就会产生电荷耗尽。
能产生热释电效应的晶体称为热释电体,又称为
热电元件。热电元件常用的材料有单晶(LiTaO3等)、压电陶瓷(PZT等)及高分子薄膜(PVF2等)。
热释电效应在近10年被用于热释电红外探测器中,广泛地用于辐射和非接触式温度测量、
红外光谱测量、
激光参数测量、工业自动控制、
空间技术、红外摄像中。我国利用ATGSAS晶体制成的红外摄像管已开始出口国外。其温度响应率达到4~5μA/℃,
温度分辨率小于0.2℃,信号灵敏度高,
图像清晰度和抗强光干扰能力也明显地提高,且滞后较小。此外,由于生物体中也存在热释电现象,故可预期热释电效应将在生物,乃至生命过程中有重要的应用。