点覆盖,在
图论中点覆盖的概念定义如下:对于图G=(V,E)中的一个点覆盖是一个
集合S⊆V使得每一条边至少有一个端点在S中。
在图论中点覆盖的概念定义如下:对于图G=(V,E)中的一个点覆盖是一个集合S⊆V使得每一条边至少有一个端点在S中。图G的顶点覆盖是一个顶点集合V,使得G中的每一条边都接触V中的至少一个顶点。我们称集合V覆盖了G的边。最小顶点覆盖是用最少的顶点来覆盖所有的边。顶点覆盖数是最小顶点覆盖的大小。相应地,图G的
边覆盖是一个边集合E,使得G中的每一个顶点都接触E中的至少一条边。如果只说覆盖,则通常是指顶点覆盖,而不是边覆盖。
边覆盖的概念定义:边覆盖是图的一个边子集,使该图上每一节点都与这个边子集中的一条边关联,只有含孤立点的图没有边覆盖,边覆盖也称为边覆盖集,图G的最小边覆盖就是指边数最少的覆盖,图G的最小边覆盖的边数称为G的边覆盖数。
我们用反证法来证明一下,设最小点
覆盖集为V,假如有两个没在V中的点之间有一条边,那么这条边就不会被V中的点所覆盖,那么V就不是最小点覆盖集,又因为V是最小点覆盖集,所以刚才假设的两个点时不存在的,除过V之外的点都是两两相互独立的。