点涡属于平面流,无限长直线涡管元(见涡旋)在与其垂直的平面中表现为一个点涡。
原理
考虑孤立点涡对周围无界的无粘性不可压缩流体所诱导的速度场。在流动平面上取极坐标(r,φ),原点放置在点涡处。点涡的强度为Γ。根据对称性可知点涡所诱导的速度只有φ方向的分量vφ,且vφ=vφ(r)。对以坐标原点O为心,r为半径的圆,用联系速度环量和涡通量的斯托克斯公式得vφ=Γ/2πr。由此可见,速度与半径成反比,在点涡处趋于无限大,所以点涡本身是流场中的一个奇点。由于点涡外的流动处处无旋且流动为轴对称,因此存在着速度势Φ和流函数Ψ,它们和速度之间存在关系:
积分后得到的公式以及与之对应的复变解析函数的表达式为
式中z为复变量;w(z)称为复位势。根据Φ和Ψ的表达式易见流线是以点涡为心的同心圆族,等势线是发自原点的射线族(见图)。Γ>0对应于逆时针方向旋转的点涡;Γ<0对应于顺时针方向旋转的点涡。
应用
龙卷风是点涡的一个例子。在龙卷风的中心附近,流动速度很高,压力很低。
在平面无旋流动中,点涡是一个重要的基本流,它和均匀流、源流、偶极子流等基本流联合使用常能得到很多有实际背景的流动。比如,将轴线某线段上的点涡连续分布、点源连续分布和均匀流叠加可得薄翼绕流问题的解。一般说来,对于运动物体所受举力的问题,在使用奇点分布法求绕流问题的解时,常需采用点涡这种形式的基本流,因为举力同速度环量有着密切的关系。
在粘性不可压缩流体中有一类特殊流动,其速度分布同点涡所诱导的速度分布完全相同。当一半径为r0的直圆柱体在粘性不可压缩流体中绕圆柱轴线旋转时,圆柱壁面上的切向速度为v0,令Γ=2πr0。由于粘性的作用,圆柱的旋转将带动不同半径上的流体绕轴旋转,其速度分布为vφ=Γ/2πr,即速度值随半径r的增加成反比地减小。令圆柱半径趋于零,同时要求Γ保持一常数值,结果得到一根半径无限小的刚性柱体在粘性流体中的运动,它所产生的流场和点涡所诱导的完全等同。
参考文献
1.词条作者:吴望一 《中国大百科全书》74卷(第二版)物理学 词条:流体力学 :中国大百科全书出版社 2009-07 :101页