火焰检测器
锅炉炉膛安全监控系统中的设备
火焰检测器是锅炉炉膛安全监控系统(Furnace Safety Supervision System,简称FSSS)中的重要设备,其作用是根据火焰的燃烧特性对燃烧工况进行实时检测,一旦火焰燃烧状态不满足正常条件或熄火时,按一定方式给出信号,保证锅炉灭火时停止燃料供应。 它主要是由探头和信号处理器两个部分组成。
简介
火焰检测设备是火力发电厂锅炉炉膛安全监控系统(FSSS)中的关键设备,它的作用贯穿于从锅炉启动至满负荷运行的全过程,用于判定全炉膛内或单元燃烧器火焰的建立/熄灭或有火与无火,当发生全炉膛灭火或单元燃烧器熄火时,火焰检测设备触点准确动作发出报警,依靠FSSS系统连锁功能,停止相应给粉机磨煤机、燃油总阀或一次风机等的运行,防止炉膛内积聚燃料,异常情况被点燃引起锅炉爆炸恶性事故的发生,因此设备性能即设备运行的可靠性与检测的准确性直接关系到机组的运行安全与稳定性。
最早的火焰检测器出现在上世纪50年代,60年代国外首先研制出了紫外线火焰检测器,70年代开始,国外陆续出现了检测火焰燃烧时释放红外线和可见光的火焰检测器,80年代又出现了基于图像、视频的锅炉燃烧监控装置,后来又有了组合探头(红外线、紫外线)的火焰检测器。发展至今,火焰检测器的检测辨别能力越来越强,检测也不断趋于智能化。
检测原理
油、煤或气体燃料的燃烧其实质是燃料化学能以电磁波的形式释放,燃烧器火焰一般都能发射几乎连续的发光光谱,其发射源是燃烧过程中生成的高温炭素微粒子、微粉炭粒子群和气体等,不同的燃料燃烧过程中的中间产物不完全相同或中间产物的所占比例各不相同,不同的燃烧中间产物所发射的光谱不完全一样,这是选择不同类型火焰检测器依据,C2发射可见光(发射波长为473.7纳米左右)、CH化合物发射紫外到蓝光区波段的光谱、炭素粒子群发射红光区光谱、CO2、H2O和SO2等三原子气体发射红外光,不同燃料的光谱分布特性是油火焰含有大量的红外线、部分可见光、和少量紫外线,煤粉火焰含有少量紫外线、丰富的可见光和少量红外线。气体火焰有丰富的紫外线、红外线和较少的可见光,而且对于单只燃烧器火焰,其辐射光谱沿火焰轴线分布是有规律的,例如煤粉锅炉中煤粉燃烧器沿轴线从里至外分为4个区域即预热区、初始燃烧区、安全燃烧区和燃尽区,在初始燃烧区不但可见光较丰富而且能量辐射率变化聚烈,因此火焰检测探头准确对准燃烧器的初始燃烧区是最佳选择。
基本分类
火焰检测器发展到现在,其检测的内容主要包括火焰信息的光能、热能、图像,不同的只是检测的原理,根据检测的原理可以将火焰检测器分为以下几种。
基于相关原理
基于相关原理的火焰检测器最早由英国的Land Combustion公司推出,在确定火焰燃烧的三维空间位置的基础上,利用两个探测器的视线形成交叉点,将交叉点对准燃烧空间位置的中心点,两个探测器采集到的火焰信号始终保持一致,结合相关理论,根据相关系数大小判断火焰燃烧情况。
基于光能
基于光能的火焰检测器应用比较广泛,主要包括基于可见光、红外线以及紫外线检测的火焰检测器,其原理就是利用火焰燃烧发出的光能来进行检测的,一般使用光电元器件作为采集装置,将光能信号转换为电信号,经过处理后判断炉膛的燃烧状况。
基于可见光的火焰检测器利用火焰产生的光强度和跳动的频率进行判断,对两个参数的采集和分析,大大提高了系统判断的准确性,应用比较多的有三星公司的IFM-IH型火焰检测器。基于红外线的火焰检测器利用火焰燃烧时产生的红外线来判断,该类检测器自发明以来,一直应用比较广泛。基于紫外线的火焰检测器同样是利用火焰燃烧时产生的紫外线进行判断,该类检测器特对以原油为燃料燃烧的火焰检测比较准确。以下对基于光能的三种类型的火焰检测器进行介绍。
(1)紫外光型
紫外光火焰检测器采用紫外光敏管作为传感元件,其光谱范围在0.006~0.4μm之间。紫外光敏管是一种固态脉冲器件,其发出的信号是自身脉冲频率与紫外辐射频率成正比例的随机脉冲。紫外光敏管有二个电极,一般加交流高电压。当辐射到电极上的紫外光线足够强时,电极间就产生“雪崩”脉冲电流,其频率与紫外光线强度有关,最高达几千赫兹。灭火时则无脉冲。
(2)可见光型
可见光火焰检测器采用光电二极管作为传感元件,其光谱响应范围在0.33~0.7μm之间。可见光火焰检测器由探头、机箱和冷却设备等部分组成。炉膛火焰中的可见光穿过探头端部的透镜,经由光导纤维到达探头小室,照到光电二极管上。
该光电二极管将可见光信号转换为电流信号,经由对数放大器转换为电压信号。对数放大器输出的电压信号再经过传输放大器转换成电流信号。然后通过屏蔽电缆传输至机箱。在机箱中,电流信号又被转换为电压信号。代表火焰的电压信号分别被送到频率检测线路、强度检测线路和故障检测线路。强度检测线路设有两个不同的限值,即上限值和下限值。当火焰强度超过上限值时,强度灯亮,表示着火;当强度低于下限值时,强度灯灭,表示灭火。
频率检测线路用来检测炉膛火焰闪烁频率,它根据火焰闪烁的频率是高于还是低于设定频率,可正确判断炉膛有无火焰。故障检测线路也有两个限值,在正常的情况下,其值保持在上、下限值之间。一旦机箱的信号输入回路出现故障,如光电管至机箱的电缆断线,则上述电压信号立刻偏离正常范围,从而发出故障报警信号。
(3)红外光型
红外光火焰检测器采用硫化铅或硫化镉光敏电阻作为传感元件,其光谱响应范围在0.7~3.2μm之间。红外光火焰检测器也是由探头、机箱和冷却设备组成。燃烧器火焰的一次燃烧区域所产生的红外辐射,经由光导纤维送到探头,通过探头中的光敏电阻转换成电信号,再由放大器放大。该火焰信号由屏蔽电缆送到机箱,通过频率响应开关和一个放大器后,再同一个参考电压(可调)进行比较。
基于图像或视频
随着人们对光学及视频采集技术和图像分析技术掌握的日渐成熟,这类火焰检测器的研究越来越多,并且使用范围广,设计中主要采用光学设备和CCD摄像机,分析采集的火焰图像灰度、火焰燃烧轮廓大小等参数,并能利用图像处理办法去除干扰,经过处理可以对火焰燃烧情况做出判断。该类检测器不仅可检测炉膛内的燃烧情况,在森林火灾和室内火灾的预防上也有广泛的应用价值。
主要特性
当前国际国内使用比较广泛,研究比较多的火焰检测器的主要功能都有相似之处,具体有以下几点:
(1)能够与计算机进行基于Modbus总线的数据互通,实现远程监控操作和联网管理;
(2)利用传感器元件采集火焰信号,提供给系统进行分析处理;
(3)针对火焰/故障状态,采用单路/双路继电器保护系统运行安全;
(4)能将火焰信息及继电器状态等数据实时传输至上位机,供工作人员查看;
(5)可以设定安全响应时间;
(6)人机界面友好,能通过按键和LED数码管电路,实现查看、设置各种检测参数,采用LED灯和数码管显示系统状态和火焰状态。
火焰检测器的这些特性为实施检测提供了切入点:模拟炉膛火焰的燃烧状态提供给待测火焰检测器,对火焰检测器输出的相关参数进行采集计算,并与待测火焰检测器检测的数据进行对比分析,可以对火焰检测器的性能参数及质量状况进行判断。
参考资料
最新修订时间:2023-04-06 16:17
目录
概述
简介
参考资料