火焰原子化器
原子吸收光谱仪的主要组成部分
火焰原子化器是原子吸收光谱仪的主要组成部分,是利用火焰使试液中的元素变为原子蒸汽的装置。由 化 学 火 焰 提 供 能 量 ,使被测元素原子化。常用的是预混合型原 子化器,它包括雾化器、雾化室和燃烧器三部分。
仪器介绍
火焰原子化器(Flame atomiser)主要应用于原子吸收,原子荧光光谱。它由雾化器、预混合室和燃烧器三部分组成。是利用火焰使试液中的元素变为原子蒸汽的装置。常见的燃烧器有全消耗型(紊流式)和预混合型(层流式)。它对原子吸收光谱法测定的灵敏度和精度有重大的影响。
主要部件
雾化器
雾化器(atomizer) 的作用是将试液变成高 度分散的雾状形式。雾滴 越 小 ,越 细 ,越有利于 基态原子的生成。通常采取气动同心雾化器。具有一定压力的压缩空气作为助燃器进入雾化器,从样品毛细管周围高速喷出,被通入的助燃气飞散成雾滴(气溶胶)。雾滴越细越易干燥、融化、汽化,生成自由原子也就越多,测定灵敏度也就越高。雾化器的雾化效率一般约在 10%左 右 ,它是影响火焰化灵敏度和检出限的主 要问题。
雾化室
试液经雾化器雾化后,还含有一定数量的大 雾滴。雾化室的作用,一是使较大雾粒沉降、凝 聚从废液口排出;二是使雾粒与燃气、助燃气均 匀混合形成气溶胶,再进入火焰原子化区;三是 起缓冲稳定混合气气压的作用,以便使燃烧器产生稳定的火焰。
燃烧器
燃烧器(burner) 的作用是产生火焰,将被测 物质分解为基态原子。试样溶液经雾化后进入燃烧器,经火焰千燥、熔化、蒸发和离解后,产生 大量的基态原子及极少量的激发态原子、离子和分子。常用的是单缝燃烧器。燃气和助燃气在雾化室中预混合后,在燃烧器缝口点燃形 成火焰。燃烧火焰由不同种类的气体混合产生,火焰的组成关系到测定的灵敏度、稳定性 和干扰等。因此对不同的元素,应选择不同的恰当的火焰。燃气和助燃气种类、流量不同,火焰的最高温度也不同。常用的是乙炔-空气火焰。它能为35种以上元素充分原子化提供最适宜的温度。最髙火焰温度约为2600K 。
工作原理
在火焰原子化中,是通过混合助燃气(气体氧化物)和燃气(气体燃料),将液体试样雾化并带入火焰中进行原子化。将试液引入火焰并使其原子化经历了复杂的过程。这个过程包括雾粒的脱溶剂、蒸发、解离等阶段。在解离过程中,大部分分子解离为气态原子。在高温火焰中,也有一些原子电离。与此同时,燃气与助燃气以及试样中存在的其它物质也会发生反应,产生分子和原子。被火焰中的热能激发的部分分子、原子和离子也会发射分子、原子和离子光谱。
复杂的原子化过程直接限止了方法的精密度,成为火焰原子光谱中十分关键的一步
类型与性质
火焰类型
火焰构造
预混合火焰结构大致可分为四个区域:干燥区、蒸发区、原子化区和电离化合区。
干燥区是燃烧器靠缝隙最近的一条宽度不大、亮度较小的光带。大部分试液在这里被干燥成固体颗粒。
蒸发区亦称第一反应区。通常有一条清晰的蓝色光带。该区因燃烧尚不充分,温度还不高。干燥的固体颗粒在这里被熔化、蒸发。
原子化区是紧靠蒸发区的一小薄层,燃烧完全,火焰温度最高,是气态原子密度较高的区域,故是火焰原子光谱法重要的光谱观测区。
电离化合区,亦称第二反应区。由于燃料气在这个区充分燃烧,温度很高,而再往外层,由于冷却作用,火焰温度急剧下降,导致部分原子被电离,部分原于由于产生强烈高温化合作用而形成化合物。
自由原子分布
自由原子在火焰中的空问分布与火焰类型、燃烧状态和元素性质有关。如图1是三种元素的吸收值沿火焰高度的分布曲线。镁最大吸收值大约在火焰的中部。开始吸收值沿火焰高度的增加而增加,这是由于长时间停留在热的火焰中,产生了大量的镁原子。然而当接近第二反应区时,镁的氧化物明显地开始形成。由于它不吸收所选用波长的辐射,以致使镁的吸收值很快下降。
燃气的比例
中性火焰
这种火焰的燃气与助燃气的比例与它们之间化学反应计量关系相近。具有温度高、干扰小、背景低等到特点,适用于许多元素的测定。
富燃火焰
富燃火焰即燃气与助燃气比例大于化学计量。这种火焰燃烧不完全、温度低、火焰呈黄色。富燃火焰背景高、干扰较多,不如中性火焰稳定。但由于还原性强,适于测定易形成难离解氧化物的元素,如:铁、钻和镍等。
贫燃火焰
燃气和助燃气的比例小于化学计量。这种火焰的氧化性较强,温度较低,有利于测定易解离、易电离的元素。如碱金属等。
参考资料
最新修订时间:2024-07-06 22:59
目录
概述
仪器介绍
主要部件
参考资料