海洋物理化学
物理化学分支
海洋物理化学是海洋化学的理论核心,它应用物理化学的理论、观点和方法,来研究海洋中的化学问题和地球化学过程,包括海水、悬浮粒子和沉积物、微表层海水和沉积物间隙水等海洋体系的组成、物理化学性质和结构、海洋及其环境(大气、洋底、河口等)所组成的体系中发生的一切物理化学过程。
研究简史
1959年在纽约召开的国际海洋会议上,西伦作了题为“海水物理化学”的演讲。以后,“海水物理化学”这一名称便被广泛采用。海洋物理化学的发展初期,研究对象主要是海水,随后研究范围逐渐推广到海底沉积物和海洋的其他界面上,就发展成了海洋物理化学。
海洋物理化学的先驱性工作在20世纪初已有进行。1901~1908年,克努曾和埃克曼建立了经典的海水状态方程式,将海水的密度、温度、盐度和压力等联系到一种数学表达式中;60年代初,西伦、加勒尔斯等人把化学平衡理论等物理化学原理,严格、系统和定量地应用到海洋中,研究海水中元素的存在形式,建立海水化学模型,为海洋物理化学的建立和发展奠定了基础。
在这以后的一段时间内,海水化学模型(包括微量元素的溶存形式)的研究,成了海洋化学中众所瞩目的一个研究内容。自60年代以来,人们又把电化学、化学动力学胶体和表面化学、量子和统计化学的理论和实验方法应用到海洋中,不仅研究了海洋水体,而且涉及海洋悬浮体、海水微表层、海洋沉积物等。
研究内容
海洋物理化学的基本内容包括:海水活度系数;海水化学模型;海水中的微量元素在固体粒子上液-固分配的理论;压力和温度对海洋中化学平衡的影响;海水的酸碱度和氧化还原条件;海洋中化学过程的动力学研究;海洋中元素的逗留时间和海洋化学微观研究等。本词条简要介绍海水活度系数、海水化学模型和海水固体粒子三个方面。
海水活度系数
与一般的水溶液或天然水(河、湖、泉、雨水)相比,海水的一个重要特征是含有众多的盐类,这使得海水与盐度极 低的无限稀溶液之间的物理-化学性质有很大的差异。为了表达这两者的差异程度,在海洋物理化学中使用了海水活度系数和海水渗透系数。
计算海水组分平均活度系数和单独离子活度系数的理论模型和公式很多,有离子缔合理论、特殊相互作用模型、斯卡特查尔德公式、水化模型、静电模型(包括戴维斯公式)、簇积分展开理论、皮策公式等。虽然使用离子选择电极可求得单独离子的活度系数,但其精确值的测定和理论计算,特别是对海水这样的高盐度体系,尚未彻底解决。在实际工作中,可用特殊相互作用公式,如斯卡特查尔德公式和皮策公式等计算海水的活度系数。总结起来,上述各计算公式可用下述公式概括之:
式中德拜-休克尔项是指德拜-休克尔理论的极限定律计算所得之值。在上述诸理论中,以簇积分展开理论和皮策公式最优,计算结果与实测值之差在实验误差范围之内。皮策公式不仅可计算海水中常量组分离子的活度系数,而且在皮策公式问世后不久即被海洋化学家应用于海水中微量组分离子活度系数的计算,结果与用特殊相互作用模型计算的更加一致。1982年,此式已成功地应用于死海水中主要离子的活度系数的计算上。皮策公式的提出,使得具体计算活度系数的工作大体上得到解决。
海水化学模型
研究海水中元素的存在形式是元素海洋地球化学的一个研究内容,又是影响海水中元素迁移变化规律的一个重要因素,因此海水化学模型是元素海洋地球化学的一个重要组成部分。它对海水分析、海水中微量元素提取机理、海水中微量元素与悬浮粒子相互作用等,均是常常需要考虑的前提。
1962年,加勒尔斯和M.E.汤普森为研究海水中常量元素的溶存形式,提出了离子对模型。后来这种海水化学模型的应用范围已不限于常量元素,而且推广到微量元素和有机物质,并提出络合物模型、HSAB模型、活度系数模型和微观结构参数模型等。这些化学模型大致可分为3类:
① 用活度系数和渗透系数来描述离子之间的相互作用,由此推断海水及其组分的若干性质。但这类方法缺乏一般海洋化学工作者所习惯的形象化的结构图式。
② 离子对模型或络合物模型。西伦、加勒尔斯和汤普森等首先提出。在已知海水化学组成、络合物的稳定常数和活度系数的基础上,应用化学平衡理论进行计算,可得常量元素和微量元素的化学模型。
③ 微观结构参数模型,是由张正斌、刘莲生、陈镇东提出的。由海水中微量元素的化学模型与结构参数的关系可见属软酸和中间酸的元素主要形成M-Cl型络合物,属硬酸的元素则主要形成M-OH型络合物。
海水固体粒子
简介
海水含有大量固体粒子,具有胶体化学或表面化学特征。这些固体粒子上微量元素的液-固分配,遵循着低浓度的界面化学和胶体化学的规律。这方面的研究是探讨海洋中元素迁移变化规律的理论基础,是河口化学的重要内容,也是海洋污染和防污、海水化学资源提取的基础研究。这方面研究虽然多数针对着微量元素,但常量元素在海水-洋底界面间的离子交换作用,也属于这种作用范围。
相互作用
海水中元素与固体粒子相互作用的理论主要有3种:①R.O.詹姆斯和T.W.希利等提出的化学吸附理论;②W.施图姆、P.W.欣德勒、C.W.戴维斯、J.O.莱基等提出的表面络合理论;③张正斌、刘莲生提出的表面分级离子(配位子)交换理论。三者各有所长,都尚在发展中。
组成
海洋固体粒子主要由粘土矿物、金属氧化物和有机物质三者组成。此三者分别与微量元素的作用均有大量的实验结果报道,但三者中何种成分对金属的交换起决定性作用,则各家说法不一。一般认为粘土矿物含量百分比最大,本身对微量元素虽有离子交换作用,但交换量不大,主要起“载体”的作用;水合氧化物含量百分比虽小,但离子交换量较大,一些学者认为它可能是与微量元素作用的主角;有机物一般与微量元素有强的络合(或螯合)作用。在有机物同时易与固体粒子结合的情况下,则它可能是海水中微量元素与固体粒子作用中的关键物质。一些学者提出海水中存在的固体粒子可分别由无机物和有机物所组成,相应地建立了无机物模型和有机物模型,再同上述元素与固体粒子相互作用的理论及元素在海洋中的逗留时间相结合,经定量处理后,可得出海水中有机物起主要作用的结论。然而,有机物所起作用的本质和定量规律,尚待进一步研究。
参考资料
最新修订时间:2022-08-25 14:42
目录
概述
研究简史
参考资料