利用表层海水与深层海水的温度不同进行发电的工程技术。使用温暖的表层水加热沸点较低的氨等,使其沸腾,然后利用其蒸汽旋转涡轮,驱动发电机发电。转动涡轮发电之后的蒸汽使用温度较低的深层海水进行冷却,变回液体氨,然后再次使用表层水使之沸腾并转动涡轮。1881年9月,由法国生物物理学家达松瓦尔(1851—940)首先提出,1926年11月,法国科学院建立一个实验温差发电站,证实达松瓦尔的设想。2012年1月,中国国家海洋局第一海洋研究所的“15 kW温差能发电装置研究及试验”课题在青岛市通过验收,使得中国成为第三个独立掌握
海水温差能发电技术的国家、,优点:不消耗任何燃料;无废料;不会制造大气污染、水污染、噪声污染;整个发电过程几乎不排放任何温室气体,如
二氧化碳;全年且一天中所有时间段皆可发电,十分稳定;副产品是淡水,可供使用:缺点是:所需初始投资资金庞大;发电成本高;深海冷水管路施工风险高。
1926年11月,
法国科学院建立了一个实验温差发电站,证实了阿松瓦尔的设想。1930年,阿松瓦尔的学生克洛德在
古巴附近的海中建造了一座
海水温差发电站。
1961年法国在
西非海岸建成两座3500千瓦的海水温差发电站。美国和
瑞典于1979年在
夏威夷群岛上共同建成装机容量为1000千瓦的海水温差发电站,美国还计划在21世纪初建成一座100万千瓦的海水温差发电装置,以及利用
墨西哥湾暖流的热能在东部沿海建立500座
海洋热能发电站,发电能力达2亿千瓦。
把热能转变成机械能必须具备三个基本条件:热源、冷源和工质。普通
热机用水作工质,热源加热工质,产生蒸汽,驱动
汽轮发电机发电,排出废汽被
冷凝器冷却,
凝结水送回锅炉,继续被加热,循环使用。海洋热能主要来自太阳能。世界大洋的面积浩瀚无边,热带洋面也相当宽广。海洋热能用过后即可得到补充,很值得开发利用。海水温差发电技术,是以海洋受太阳能加热的表层海水(25℃~28℃)作高温热源,而以500米~1 000米深处的海水(4℃~7℃)作
低温热源,用热机组成的热力循环系统进行发电的技术。从高温热源到低温热源,可能获得总温差15℃~20℃左右的
有效能量。最终可能获得具有工程意义的11℃温差的能量。
辽阔的海洋是一个巨大的“储热库”,它能大量地吸收辐射的太阳能,所得到的能量达60万亿千瓦左右。海水的温度随着海洋深度的增加而降低。这是因为
太阳辐射无法透射到400米以下的海水,海洋表层的海水与500米深处的海水温度差可达20℃以上。海洋中上下层水温度的差异,蕴藏着一定的能量,叫做
海水温差能,或称
海洋热能。利用海水温差能可以发电,这种发电方式叫海水温差发电。
用海水温差发电,还可以得到副产品——淡水,所以说它还具有
海水淡化功能。一座10万千瓦的
海水温差发电站,每天可产生378立方米的淡水,可以用来解决工业用水和饮用水的需要。另外,由于电站抽取的深层冷海水 中含有丰富的营养盐类,因而发电站周围就会成为浮游生物和鱼类群集的场所,可以增加近海捕鱼量。
据计算,从南纬20度到北纬20度的区间海洋洋面,只要把其中一半用来发电,海水水温仅平均下降1℃,就能获得600亿千瓦的电能,相当于全世界所产生的全部电能。专家们估计,单在美国的东部海岸由
墨西哥湾流出的暖流中,就可获得美国在1980年需用电量的75倍。
海水温差发电技术,取代火力发电、风电与
光伏的太阳能技术,风电与光伏的太阳能提供间歇性电能,对电网稳定运行冲击很大,接入电网还需要传统能源给它调峰。
海水温差发电设备制造中采取全新技术,解决了海水抽取中腐蚀性及高能耗难题、换热器体积庞大的问题,取消了工质回流泵,减少设备自身能耗,增加能量输出,并在
汽轮机上采取了全新技术,使机构效率更高,体积更小,制造成本及制造的技术难度降到最低。
海水温差发电设备的工作循环方式:液态
低沸点工质加热
汽化产生高压蒸汽冲击
汽轮机发电,再由冷源冷却液化,但取消了把液化工质泵送到原来加热处这一环节(现美国、日本及国内研究海水温差发电的技术都有这一工作环节,这一环节把汽轮机发出的电能大部分约(60-70%,与工质性质有关)消耗掉,这样整个机组向外送不出多余的电能),该技术专利在申请中 。
在20度的温差状态下,低温工质在饱和状态下,体积只能膨胀3倍左右,就相当于1体积膨胀到3体积产生3N的能量,如果汽轮机效率为80%,则汽轮机输出能量为2.4N,而膨胀后的工质冷却到原来的1体积,被工质泵泵回到加热器里去,它需要消耗1N的能量,假如泵的效率是66%的话,则泵要消耗约1.5N的能量,这样机组只能输出2.4N-1.5N=0.9N的能量,再加上抽冷、热海水消耗的能量,整个机组输出能量就很微少,根本没有什么
商业价值----这就是现有美国日本在研究的海水温差发电不能
商业化的原因。