测地线又称
大地线或
短程线,可以定义为空间中两点的局域最短或最长路径。测地线(Geodesic)的名字来自于对于
地球尺寸与形状的
大地测量学(Geodesy)。
设是一个带有黎曼联络的
黎曼流形。若一条参数化的曲线在处有,则称曲线在点处测地。如果对于每一点都测地,则称该曲线为测地线。
类似地球这样的物体并非由于称为
引力的力使之沿着弯曲轨道运动,而是它沿着
弯曲空间中最接近于直线的称之为测地线的轨迹运动。例如,地球的表面是一弯曲的
二维空间。地球上的测地线称为大圆,是两点之间最近的路径。由于测地线是两个机场之间的最短程,这正是领航员叫飞行员飞行的航线。在
广义相对论中,物体总是沿着
四维时空的测地线走。尽管如此,在我们的
三维空间看起来它是沿着弯曲的途径(这正如同看一架在非常多山的地面上空飞行的飞机。虽然它沿着
三维空间的直线飞,在二维的地面上它的影子却是沿着一条弯曲的路径)。
如果两曲面沿一曲线相切,并且此曲线是其中一个曲面的测地线,那么它也是另一个曲面 的测地线。 过曲面上任一点,给定一个曲面的切方向,则存在唯一一条测地线切于此方向。 在适当的小范围内联结任意两点的测地线是最短线,所以测地线又称为短程线。
光线经过一个
大质量天体附近时,受其
引力作用(或者说进入了该天体附近的弯曲空间), 路线会发生偏转,称为“测地线效应”。
距离最短的曲线在相对论中的专业术语是测地线,事实上,相应于速度小于C,等于C,大于C的三种测地线分别称为类时测地线,类光测地线和类空测地线。所以,如果不受到引力以外其他力的作用,物体将在类时或类光测地线上运动(因为没有物体的速度能超过
光速)
例如,地球这样的物体并非收到称作引力的力的作用而沿着弯曲轨道运动;相反,他们之所以沿着弯曲轨道运动,是因为在弯曲空间中,他们遵循着一条最接近直线的路径运动,这个路径称作测地线。用专业术语来说,测地线的定义就是相邻两点之间最短(或最长) 的路径。
也称作测地线
进动(Geodetic Effect或Geodetic Precession)是指在
广义相对论预言下
引力场的
时空曲率对处于其中的具有
自旋角动量的测试质量的
运动状态所产生的影响,这种影响造成了测试质量的自旋角动量在
引力场内沿测地线的进动。这种效应在今天成为了广义相对论的一种实验验证方法,并且已经由美国国家航空航天局于2004年发射的
科学探测卫星“
引力探测器B”在观测中证实。
由于
广义相对论本身是一种几何理论,所有的
引力效应都可以用
时空曲率来解释,
测地线效应也不例外。不过,这里
自旋角动量的
进动也可以部分地从广义相对论的替代理论之一——引力磁性来理解。
从引力磁性的观点来看,测地线效应首先来源于轨道-
自旋耦合作用。在引力探测器B的观测中,这是
引力探测器B中的
陀螺仪的自旋和位于轨道中心的地球的质量流的
相互作用。本质上这完全可以和
电磁理论中的托马斯进动做类比。这种相互作用所导致的进动在全部的测地线进动中起到三分之一的贡献。
另外的三分之二贡献不能用引力磁性来解释,只能认为来自于时空曲率。简单来说,
平直时空中沿轨道运动的
自旋角动量方向会随着
引力场造成的
时空弯曲而倾斜。这一点其实并不难于理解:垂直于一个平面的矢量在平面发生弯曲后定然会改变方向。根据推算,
引力探测器B的绕地轨道周长由于
地球引力场的影响会比不考虑引力场时的周长缩短1.1英寸(约合2.8厘米),这个例子在引力探测器B的研究中经常被称作“丢失的一英寸”。在
引力探测器B的位于642千米高空的
极轨道上,
广义相对论的理论预言由于自旋-轨道
耦合和
时空曲率而产生的
轨道平面上的
测地线效应总和为每年
进动6.606
角秒(约合0.0018度)。这对于弱引力场中
相对论效应来说已经是一个相当显著的影响了(作为同为引力探测器B的观测任务之一的地球引力场的
参考系拖拽要比测地线效应弱170倍)。引力探测器B的观测结果首先在2007年4月举行的
美国物理学会四月年会上进行了快报,其观测结果与
理论误差小于1%。