正规扩张
抽象代数中的概念
正规扩张是抽象代数中的概念,属于域扩张中的一类。一个域扩张L/K是正规扩张当且仅当扩域L是多项式环K[X]中的某个多项式的分裂域。布尔巴基学派将这类扩张称为“准伽罗瓦扩张”。正规扩张是代数扩张的一种。
定义
正规扩张的定义不止一种,以下三个准则都可以刻画(有限)正规扩张,是三个等价的定义。域扩张L/K是正规扩张当且仅当它满足以下三个等价条件中任意一个:
例子
是的一个正规扩张,因为它是上的多项式的分裂域。然而,并不是的一个正规扩张,因为上的不可约多项式有一个根:在里面,但它的另外两个根:和都是复数,不在里面。只有在加入了三次单位根:后的扩域才是一个正规扩张。
也可以用正规扩张的第二个定义来证明不是的正规扩张。设域是由所有复代数数生成的扩域,则是的一个代数闭包,并且在里面。另一方面,
并且,如果记是的复根之一,那么映射
是在上的一个嵌入,并且它限制在上的部分是平凡的(将中元素映射到自己)。但是σ并不是上的自同构。
更一般地,对每一个素数p,域扩张都是的一个正规扩张,扩张的次数是p(p-1)。是上的多项式的分裂域。其中的是任意一个复数p次单位根
性质
设有域扩张L/K,那么:
1) 如果L是K的正规扩张,并且F是一个子扩张(也就是说有扩张K⊂F⊂L)那么L也是F的正规扩张。
2) 如果L的子域E和F都是K的正规扩张,那么两者的复合扩张EF(指L的子域中同时包含E和F的最小者)以及两者的交E∩F也都是K的正规扩张。
正规闭包
设有域扩张L/K,那么总存在域扩张M/L,使得M/K是正规扩张。在同构意义上,最小的这样的扩张是唯一。即是说,其他的域扩张N/L如果使得N/K是正规扩张,那么总存在N/L的子扩张M'/L,使得M'同构于M。这个唯一的“最小”正规扩张M/L称为域扩张L/K的正规闭包。
如果L/K是有限扩张,那么它的正规闭包M/L也是有限扩张(因此M/K也是有限扩张)。
参考资料
最新修订时间:2022-08-25 14:10
目录
概述
定义
例子
参考资料