机器学习中一个重要的话题便是模型的
泛化能力,泛化能力强的模型才是好模型,对于训练好的模型,若在
训练集表现差,在测试集表现同样会很差,这可能是欠拟合导致。欠拟合是指模型拟合程度不高,数据距离拟合曲线较远,或指模型没有很好地捕捉到数据特征,不能够很好地拟合数据。
机器学习的基本问题是利用模型对数据进行拟合,学习的目的并非是对有限
训练集进行正确预测,而是对未曾在训练集合出现的样本能够正确预测。模型对训练集数据的误差称为经验误差,对测试集数据的误差称为泛化误差。模型对训练集以外样本的预测能力就称为模型的泛化能力,追求这种泛化能力始终是机器学习的目标。过拟合和欠拟合是导致模型泛化能力不高的两种常见原因,都是模型学习能力与数据复杂度之间失配的结果。“欠拟合”常常在模型学习能力较弱,而数据复杂度较高的情况出现,此时模型由于学习能力不足,无法学习到数据集中的“一般规律”,因而导致泛化能力弱。与之相反,“过拟合”常常在模型学习能力过强的情况中出现,此时的模型学习能力太强,以至于将训练集单个样本自身的特点都能捕捉到,并将其认为是“一般规律”,同样这种情况也会导致模型泛化能力下降。过拟合与欠拟合的区别在于,欠拟合在训练集和测试集上的性能都较差,而过拟合往往能较好地学习训练集数据的性质,而在测试集上的性能较差。在神经网络训练的过程中,欠拟合主要表现为输出结果的高偏差,而过拟合主要表现为输出结果的高方差。
过拟合和欠拟合是所有
机器学习算法都要考虑的问题,其中欠拟合的情况比较容易克服, 常见解决方法有:
偏差又称为表观误差,是指个别测定值与测定的平均值之差,它可以用来衡量测定结果的精密度高低。在统计学中,偏差可以用于两个不同的概念,即有偏采样与有偏估计。一个有偏采样是对总样本集非平等采样,而一个有偏估计则是指高估或低估要估计的量。
方差在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。
在机器学习中,偏差描述的是根据样本拟合出的模型输出结果与真实结果的差距,损失函数就是依据模型偏差的大小进行反向传播的。降低偏差,就需要复杂化模型,增加模型参数,但容易造成过拟合。方差描述的是样本上训练出的模型在测试集上的表现,降低方差,继续要简化模型,减少模型的参数,但容易造成欠拟合。根本原因是,我们总是希望用有限的训练样本去估计无限的真实数据。假定我们可以获得所有可能的数据集合,并在这个数据集上将损失函数最小化,则这样的模型称之为“真实模型”。但实际应用中,并不能获得且训练所有可能的数据,所以真实模型一定存在,但无法获得。
泛化能力(generalization ability)是指
机器学习算法对新鲜样本的适应能力。学习的目的是学到隐含在数据对背后的规律,对具有同一规律的学习集以外的数据,经过训练的网络也能给出合适的输出,该能力称为泛化能力。通常期望经训练样本训练的网络具有较强的泛化能力,也就是对新输入给出合理响应的能力。应当指出并非训练的次数越多越能得到正确的输入输出映射关系。网络的性能主要用它的泛化能力来衡量。