柯西-阿达马公式(Cauchy-Hadamard Formula)为
复分析(Complex analysis)中求单复变形式
幂级数收敛半径的公式,以法国数学家奥古斯丁·路易·柯西和雅克·阿达马的名字命名。
形式幂级数和多项式的形式定义有类似之处。对于熟悉幂级数的读者,也可以将其看作是不讨论幂级数敛散性,也就是将其中的不定元仅仅看作是一个代数对象,而不是任何具体数值的时候写出的幂级数。举例来说,以下的
级数式子:
如果我们把它当成幂级数来研究的话,重点会放在它的
收敛半径等于1、其对应的幂级数函数是否满足某些性质等等。但作为形式幂级数来研究时,我们关注的是它本身的结构。我们甚至可以把它简写为: 这样,只关注它的系数。我们完全可以考虑各种系数的形式幂级数。比如说系数为
阶乘的形式幂级数: ,即使说它对应的幂级数:
对每个确定的阶数 ,这个计算是有限项(至多 项)的相加,所以在计算形式幂级数的加减法和乘法的时候,不需要像在对幂级数进行计算时一样,考虑诸如是否绝对收敛、条件收敛或是一致收敛的问题。另外,如多项式的形式运算一样,形式幂级数也满足加法的交换律、加法的结合律、乘法的交换律、乘法的结合律以及乘法对加法的分配律。
形式幂级数不仅能够定义乘法,也能定义乘法逆的运算。一个形式幂级数 的逆是指另一个形式幂级数 ,使得 . 如果这样的形式幂级数 存在,就是唯一的,将其记为 。同时我们也可以定义形式幂级数的除法:当 的逆存在时, 比如说,可以很容易验证: