1842年,
法国数学家E.C.卡塔朗(Catalan)提出一个猜想:8和9是仅有的二个大于1的连续整数,它们都是正整数的乘幂。这一著名的猜想,在很长一段时间内,甚至连“是否有3个连续整数,它们都是正整数的乘幂;以及方程x2=yn十1(n > 3,xy≠0)是否有正整数解”都未解决。
1962年,
柯召解决了这两个难度很大的问题。他证明了不存在3个连续数都是正整数的乘幂,以及证明了方程x2=yn十1在n > 3时无xy≠0的正整数解。这是研究卡塔朗猜想的重大突破。
莫德尔的专著《不定方程》(The Diophantine Equations)中把柯召关于方程x2-1=yn的结果称为柯氏定理。特别是,他在证明这个定理时,提出了计算雅可比(Jacobi)符号 来研究不定方程的方法,这里 n是奇数,p、q是不同的奇素数。1977年,G.特尔加尼亚(Terjanian)对偶指数费马大定理第一情形的证明,以及1983年,A.罗特基维奇(Rotkiwicz)在不定方程中所取得的一系列重要结果,都用到柯召的方法和思想。