极轴
几何术语
平面上,取一点O称为极点,从O出发的一射线OX称为‘极轴’。平面上任意一点P的位置,就可以用线段OP的长度γ和OP与OX所夹的角θ来确定。(γ、θ)称为点P的极坐标
定义
在平面上取定一点O,称为极点。从O出发引一条射线Ox,称为极轴。再取定一个单位长度,通常规定角度取逆时针方向为正。这样,平面上任一点P的位置就可以用线段OP的长度ρ以及从Ox到OP的角度θ来确定,有序数对(ρ,θ)就称为P点的极坐标,记为P(ρ,θ);ρ称为P点的极径,θ称为P点的极角。
建立极坐标系的要素是①极点;②极轴;③长度单位;④角度单位和它的正方向。
此种坐标系的原点叫做“极点”,极轴是以极点为端点的一条射线,以极点为观测点。
举例
如(5,π/4)就是以极点为中心,逆时针方向π/4(45°)方向,5个单位长度的那个点。
PS:通俗点讲,极坐标是可以和直角坐标系互换的,一般的说来,极点大概就类似于直角坐标系里的原点,极轴就是X轴。
x=ρcosθ
y=ρsinθ(ρ不是P,念 rou ,是长度;θ是角度。)
应用
(1)用于定位和导航。极坐标通常被用于导航,作为旅行的目的地或方向可以作为从所考虑的物体的距离和角度。例如,飞机使用极坐标的一个略加修改的版本进行导航。这个系统中是一般的用于导航任何种类中的一个系统,在0°射线一般被称为航向360,并且角度是以顺时针方向继续,而不是逆时针方向,如同在数学系统那样。航向360对应地磁北极,而航向90,180,和270分别对应于磁东,南,西。因此,一架飞机向正东方向上航行5海里将是在航向90(空中交通管制读作090)上航行5个单位。
(2)有些几何轨迹问题如果用极坐标法处理,它的方程比用直角坐标法来得简单,描图也较方便。1694年,J.贝努利利用极坐标引进了双纽线,这曲线在18世纪起了相当大的作用。
(3)建模有径向对称的系统提供了极坐标系的自然设置,中心点充当了极点。这种用法的一个典型例子是在适用于径向对称的水井时候的地下水流方程。有径向力的系统也适合使用极坐标系。这些系统包括了服从平方反比定律的引力场,以及有点源的系统,如无线电天线。
参考资料
最新修订时间:2022-09-25 13:15
目录
概述
定义
举例
参考资料