机械动力学是
机械原理的主要组成部分。它研究机械在运转过程中的受力、机械中各构件的质量与机械运动之间的相互关系,是现代机械设计的理论基础。研究机械运转过程中能量的平衡和分配关系。主要研究的是:在已知外力作用下,求具有确定惯性参量的机械系统的真实运动规律;分析机械运动过程中各构件之间的相互作用力;研究回转构件和机构平衡的理论和方法;机械振动的分析;以及机构的分析和综合等等。
研究对象
机构动力学是研究构成机构要素的惯性和机构中各元、部件的刚性引起振动的一门学科。
为了简化问题,常把机械系统看作具有理想、稳定约束的刚体系统处理。对于单自由度的机械系统,用等效力和等效质量的概念 ,可以把刚体系统的动力学问题转化为单个刚体的动力学问题;对多自由度机械系统动力学问题一般用
拉格朗日方程求解。
机械系统动力学方程常常是多参量非
线性微分方程,只在特殊条件下可直接求解,一般情况下需要用数值方法迭代求解。许多机械动力学问题可借助电子计算机分析。
机械运动过程中,各构件之间相互作用力的大小和变化规律是设计运动副的结构、分析支承和构件的承载能力,以及选择合理润滑方法的依据。在求出机械真实运动规律后可算出各构件的惯性力,再依据
达朗贝尔原理,用静力学方法求出构件间的相互作用力。
平衡的目的是消除或减少作用在机械基础上周期变化的振颤力和振颤力矩。对于刚性转子的平衡已有较成熟的技术和方法:对于工作转速接近或超过转子自身固有频率的挠性转子平衡问题,不论是理论和方法都需要进一步研究。
平面或空间机构中包含有往复运动和平面或空间一般运动的构件,其质心沿一封闭曲线运动。根据机构的不同结构,可以应用附加配重或附加构件等方法,全部或部分消除其振颤力。但振颤力矩的全部平衡较难实现。
机械运转过程中能量的平衡和分配关系包括:机械效率的计算和分析,调速器的理论和设计,飞轮的应用和设计等。
机械振动的分析是机械动力学的基本内容之一, 现已发展成为内容丰富、自成体系的一门学科。
机构分析和机构综合一般是对机构的结构和运动而言,但随着机械运转速度的提高,机械动力学已成为分析和综合高速机构时不可缺少的内容。
近代机械发展的一个显著特点是 ,自动调节和控制装置日益成为机械不可缺少的组成部分。机械动力学的研究对象已扩展到包括不同特性的动力机和控制调节装置在内的整个机械系统,控制理论已渗入到机械动力学的研究领域。
应用范围
在高速、精密机械设计中,为了保证机械的精确度和稳定性,构件的弹性效应已成为设计中不容忽视的因素。一门把机构学、机械振动和弹性理论结合起来的新的学科——运动弹性体动力学正在形成,并在高速连杆机构和
凸轮机构的研究中取得了一些成果。
在某些机械的设计中,已提出变质量的机械动力学问题。各种模拟理论和方法以及运动和动力参数的测试方法,日益成为机械动力学研究的重要手段。