最优控制是指在给定的约束条件下,寻求一个控制,使给定的系统性能指标达到极大值(或极小值)。它反映了系统有序结构向更高水平发展的必然要求。它属于最优化的范畴,与最优化有着共同的性质和理论基础。对于给定初始状态的系统,如果控制因素是时间的函数,没有系统状态反馈,称为开环最优控制,如果控制信号为系统状态及系统参数或其环境的函数,称为自适应控制。
使控制系统的性能指标实现最优化的基本条件和综合方法,可概括为:对一个受控的动力学系统或运动过程,从一类允许的控制方案中找出一个最优的控制方案,使系统的运动在由某个初始状态转移到指定的目标状态的同时,其性能指标值为最优。这类问题广泛存在于技术领域或社会问题中。
例如,确定一个最优控制方式使
空间飞行器由一个轨道转换到另一轨道过程中燃料消耗最少。
最优控制理论是50年代中期在空间技术的推动下开始形成和发展起来的 。美国学者R.贝尔曼1957年提出的
动态规划和前苏联学者L.S.庞特里亚金1958年提出的
极大值原理,两者的创立仅相差一年左右。对最优控制理论的形成和发展起了重要的作用。线性系统在二次型性能指标下的最优控制问题则是R.E.卡尔曼在60年代初提出和解决的。
从数学上看,确定最优控制问题可以表述为:在运动方程和允许控制范围的约束下,对以控制函数和运动状态为变量的性能指标函数( 称为泛函 ) 求取极值( 极大值或极小值)。解决最优控制问题的主要方法有古典变分法(对泛函求极值的一种数学方法)、极大值原理和动态规划。最优控制已被应用于综合和设计
最速控制系统、最省燃料控制系统、最小能耗控制系统、线性调节器等。
一种是
动态规划法,另一种是
极小值原理。它们都能够很好的解决控制有闭集约束的变分问题。值得指出的是,动态规划法和极小值原理实质上都属于解析法。此外,变分法、线性二次型控制法也属于解决最优控制问题的解析法。最优控制问题的研究方法除了解析法外,还包括数值计算法和梯度型法。
【1】孙文瑜,徐成贤,朱德通 编,《最优化方法》,
高等教育出版社,2004