曲率圆,又称密切圆。在曲线上一点M的法线上,在凹的一侧取一点D ,使DM等于该点处的曲率半径,以D为圆心,DM为半径作圆,这个圆叫做曲线在点M处的曲率圆。在点M附近,曲率圆弧与曲线弧密切程度非常好,所以曲率圆又叫密切圆。
设曲线在点处的
曲率为,在点处曲线的法线上凹的一侧取一点,使得,以为圆心,为半径做圆,这个圆就叫做曲线在点处的曲率圆,曲率圆的圆心叫做曲线在点处的
曲率中心,曲率圆的半径叫做曲线在点处的
曲率半径。
曲率圆与曲线在点有相同的切线和凹向以及相同的曲率,因而在点附近,曲率圆弧与曲线弧密切程度非常好,所以曲率圆又叫密切圆。在实际问题中,常常用曲率圆在点邻近的一段圆弧来近似地代替曲线弧,使问题简化。