amorphous silicon α-Si 又称
无定形硅。单质硅的一种形态。棕黑色或灰黑色的微晶体。硅不具有完整的金刚石晶胞,纯度不高。熔点、密度和硬度也明显低于晶体硅。化学性质比晶体硅活泼。可由活泼金属(如钠、钾等)在加热下还原四卤化硅,或用碳等还原剂还原二氧化硅制得。采用辉光放电气相沉积法就得含氢的非晶硅薄膜。
简介
非晶硅是一种直接能带半导体,它的结构内部有许多所谓的“悬键”,也就是没有和周围的硅原子成键的电子,这些电子在电场作用下就可以产生电流,并不需要声子的帮助,因而非晶硅可以做得很薄,还有制作成本低的优点。
结构
非晶硅基本上是正四面体的形式,但却发生变形产生了许多缺陷—悬挂链和空洞等。结构特征为短程有序而长程无序的α-硅。纯α-硅因缺陷密度高而无法使用。氢在其中补偿悬挂链,并进行掺杂和制作pn结。
技术优势和劣势
非晶硅的优点
可以自由裁剪,因而可以充分利用合成的产品,不像晶体硅不能自由裁剪,制作成器件时材料磨下好多碎末,浪费很大;它的制作过程是气相沉积(1976,Spear法)——化氢热分解,分解时可以根据需要掺杂,如掺入磷化氢或硼化氢,由于是气相沉积,制作工艺条件容易进行自动化控制;它还可以制成很薄很薄的薄膜,而晶体硅却至少要达到几百微米的厚度。这是由于晶体硅是一种间接能带半导体,单靠光子并不能把电子激发到导带中去产生电流,而要靠所谓声子的帮助,这种所谓的声子来源于晶格振动,晶体做得太薄,产生的声子就太少,光电转化率就太低。
非晶硅的缺点
一是寿命短,在光的不断照射下会发生所谓Staebler-Wronski效应,光电转化效率会下降到原来的25%,这本质上正是非晶硅中有太多的以悬键为代表的缺陷,致使结构不稳定;
二是它的光电转化效率远比晶体硅低。现今市场上的晶体硅的光电转化效率为12%,最近面世的晶体硅的光电转化效率已经提高到18%,在实验室里,甚至可以达到29%(对比:绿色植物的叶绿体的光电转化效率小于1%!),然而非晶硅的光电转化效率一直没有超过10%。
化学性质
化学性质比晶体硅活泼。可由活泼金属(如钠、钾等)在加热下还原
四氯化硅,或用碳等
还原剂还原
二氧化硅制得。结构特征为短程有序而长程无序的α-硅。纯α-硅因缺陷密度高而无法使用。
应用范围
非晶硅在太阳辐射峰附近的光吸收系数比晶体硅大一个数量级。
禁带宽度1.7~1.8eV,而
迁移率和
少子寿命远比晶体硅低,可以制成非晶硅场效应晶体管;用于
液晶显示器件、集成式a—Si倒相器、集成式图象传感器、以及双稳态
多谐振荡器等器件中作为非线性器件;利用非晶硅膜可以制成各种光敏、位敏、力敏、热敏等传感器;利用非晶硅膜制做静电复印感光膜,不仅复印速率会大大提高,而且图象清晰,使用寿命长;等等。目前非晶硅的应用正在日新月异地发展着,可以相信,在不久的将来,还会有更多的新器件产生。
非晶硅太阳能电池
作为太阳能材料尽管是一种很好的电池材料,但由于其光学带隙为1.7eV, 使得材料本身对太阳辐射光谱的长波区域不敏感,这样一来就限制了非晶硅太阳能电池的转换效率。此外,其光电效率会随着光照时间的延续而衰减,即所谓的光致衰退S一W效应,使得电池性能不稳定。解决这些问题的这径就是制备叠层太阳能电池,叠层太阳能电池是由在制备的p、i、n层单结太阳能电池上再沉积一个或多个P-i-n子电池制得的。叠层太阳能电池提高转换效率、解决单结电池不稳定性的关键问题在于:①它把不同禁带宽度的材科组台在一起,提高了光谱的响应范围;②顶电池的i层较薄,光照产生的电场强度变化不大,保证i层中的光生载流子抽出;③底电池产生的载流子约为单电池的一半,光致衰退效应减小;④叠层太阳能电池各子电池是串联在一起的。
制备方法
由
非晶态合金的制备知道,要获得非晶态,需要有高的冷却速率,而对冷却速率的具体要求随材料而定。硅要求有极高的冷却速率,用液态快速淬火的方法目前还无法得到非晶态。近年来,发展了许多种气相淀积非晶态硅膜的技术,其中包括真空蒸发、辉光放电、溅射及
化学气相淀积等方法。一般所用的主要原料是单硅烷(SiH4)、二硅烷(Si2H6)、
四氟化硅(SiF4)等,纯度要求很高。非晶硅膜的结构和性质与制备工艺的关系非常密切,目前认为以辉光放电法制备的非晶硅膜质量最好,设备也并不复杂。
辉光放电法:利用反应气体在等离子体中发生分解而在衬底上淀积成薄膜,实际上是在等离子体帮助下进行的化学气相淀积。等离子体是由高频电源在真空系统中产生的。根据在真空室内施加电场的方式,可将辉光放电法分为直流电、高频法、微波法及附加磁场的辉光放电。在辉光放电装置中,非晶硅膜的生长过程就是硅烷在等离子体中分解并在衬底上淀积的过程。
发展历史
本世纪二、三十年代固体物理的迅速发展及随后晶体管的发明开创了现代的半导体工业,引起了社会生活的巨大变革,奠定了信息时代的基础。迄今为止所有的电子器件都是晶体材料制成的,其中以单晶硅最为重要。五十年起就陆续有人试图用蒸发、溅射等方法制备非晶态硅,期望获得可以和单晶硅媲美的材料。经过二十多年的努力,英国的Dundee大学Spear在一九七五年采用一种叫做“辉光放电”的新方法成功地把非晶硅掺杂成n或P型半导体,并制出n-p结。两年之后,美国RCA公司的Carlson又用相同的方法制出效率达6多的非晶硅太阳能电池。一个新兴的非晶态半导体领域一下子展现在人们的面前。
非晶硅(a—Si∶H)是一种新兴的半导体薄膜材料,它作为一种新能源材料和电子信息新材料,自70年代问世以来,取得了迅猛发展。
非晶硅太阳能电池是目前非晶
硅材料应用最广泛的领域,也是太阳能电池的理想材料,光电转换效率已达到13%,这种太阳能电池将成为无污染的特殊能源。1988年全世界各类太阳能电池的总产量35.2兆瓦,其中非晶
硅太阳能电池为13.9兆瓦,居首位,占总产量的40%左右。与晶态硅太阳能电池相比,它具有制备工艺相对简单,原材料消耗少,价格比较便宜等优点。