无人航天器是指世界上研制与发射的各种类型的
人造地球卫星、
空间探测器和货运飞船。用途为太空运行,执行探索、开发、利用太空和天体等特定任务,无人飞行器除了特殊用途需要返回地球外,一般是不回收的。它们在完成特定的航天任务后,一是落入地球大气层烧毁,一是在太空中漫游形成太空垃圾。
用途
无人航天器用于太空运行,执行探索、开发、利用太空和天体等特定任务。它出现使人类的活动范围从地球大气层扩大到广阔无垠的宇宙空间,引起了人类认识自然和改造自然能力的飞跃,对社会经济和社会生活产生了重大影响。
航天器在地球大气层以外运行,摆脱了大气层阻碍,可以接收到来自宇宙天体的全部电磁辐射信息,开辟了全波段天文观测;航天器从近地空间飞行到
行星际空间飞行,实现了对空间环境的直接探测以及对月球和太阳系大行星的逼近观测和直接取样观测;环绕地球运行的航天器从几百千米到数万千米的距离观测地球,迅速而大量地收集有关地球大气、海洋和陆地的各种各样的电磁辐射信息,直接服务于气象观测、军事侦察和资源考察等方面;
人造地球卫星作为空间无线电中继站,实现了全球卫星通信和广播,而作为空间基准点,可以进行全球卫星导航和大地测量;利用空间高真空、强辐射和失重等特殊环境,可以在航天器上进行各种重要的科学实验研究。
分类
无人航天器可分为人造地球卫星、
空间探测器和货运飞船。人造地球卫星又可以分为科学卫星、应用卫星和技术实验卫星,空间探测器可以分为月球探测器、卫星和行星际探测器。
组成部分
航天器在宇宙空间运动,是由于天体引力场的作用,它的速度是由发射的运载器提供的,根据不同的任务,可选择和设计不同的轨道。大多数航天器不带飞行动力装置,它一般由专用系统(有效载荷,不同用途的航天器装有不同的专用舱)和保障系统(包括结构系统、电源系统、姿态控制系统、无线电测控系统、生命保障系统、应急救生系统、返回着陆系统等)组成。
专用系统
不同用途航天器的主要区别在于装有不同的专用系统。专用系统种类很多,随航天器执行的任务不同而异。例如,天文卫星的天文望远镜、光谱仪和粒子探测器,侦察卫星的可见光照相机、电视摄像机或无线电侦察接收机,通信卫星的转发器和通信天线,导航卫星的双频发射机、高精度振荡器或原子钟等。单一用途航天器装有一种类型的专用系统,多用途航天器装有几种类型的专用系统。
保障系统
各种类型航天器的保障系统往往是相同或类似的,一般包括以下一些系统:
结构系统:用于支承和固定航天器上的各种仪器设备,使它们构成一个整体,以承受地面运输、运载器发射和空间运行时的各种力学和空间环境。结构形式主要有整体结构、密封舱结构、公用舱结构、载荷舱结构和展开结构等。航天器的结构大多采用铝、镁、钛等轻合金和
增强纤维复合材料。
热控制系统:又称温度控制系统,用来保障各种仪器设备在复杂的环境中处于允许的温度范围内。航天器热控制的措施主要有表面处理(抛光、镀金或喷刷涂料),包覆
多层隔热材料,使用
热控百叶窗、热管和电加热器等。
电源系统:用来为航天器所有仪器设备提供所需的电能。
人造地球卫星大多采用蓄电池电源和
太阳电池阵电源系统,
空间探测器采用太阳电池阵电源系统或空间核电源,载人航天器大多采用
氢氧燃料电池或太阳电池阵电源系统。
姿态控制系统:用来保持或改变航天器的运行姿态。航天器一般都需要姿态控制,例如使侦察卫星的可见光照相机镜头对准地面,使通信卫星的天线指向地球上某一区域等。常用的姿态控制方式有三轴姿态控制、自旋稳定、重力梯度稳定和磁力矩控制等(见航天器姿态控制)。
轨道控制系统:用来保持或改变航天器的运行轨道。航天器轨道控制以
轨道机动发动机提供动力,由程序控制装置控制或地面
航天测控站遥控。轨道控制往往与姿态控制配合,它们构成
航天器控制系统。
无线电测控系统:包括无线电跟踪、遥测和遥控 3个部分。跟踪部分主要有信标机和应答机。它们不断发出信号,以便地面测控站跟踪航天器并测量其轨道。遥测部分主要由传感器、调制器和发射机组成,用于测量并向地面发送航天器的各种仪器设备的工程参数(工作电压、温度等)和其他参数(
探测仪器测量到的环境数据、敏感器测量到的航天器姿态数据等)。遥控部分一般由接收机和译码器组成,用于接收地面测控站发来的遥控指令,传送给有关系统执行。
回着陆系统:用于保障返回型航天器安全、准确地返回地面。它一般由制动火箭、降落伞、着陆装置、标位装置和控制装置等组成。在月球或其他行星上着陆的航天器配有着陆系统,其功用和组成与返回型航天器着陆系统类似。
生命保障系统:
载人航天器生命保障系统用于维持航天员正常生活所必需的设备和条件,一般包括温、湿度调节、供水供氧、空气净化和成分检测、废物排除和封存、食品保管和制作、水的再生等设备。
应急救生系统:当航天员在任一飞行阶段发生意外时,用以保证航天员安全返回地面。它一般包括救生塔、
弹射座椅、分离座舱等救生设备。它们都有独立的控制、生命保障、防热和返回着陆等系统。
计算机系统:用于存贮各种程序、进行信息处理和协调管理航天器各系统工作。例如,对地面遥控指令进行存贮、译码和分配,对遥测数据作预处理和数据压缩,对航天器姿态和轨道测量参数进行坐标转换、轨道参数计算和数字滤波等。航天器计算机有单机、双机和多机系统。
运行原理
天器在天体引力场作用下,基本上按天体力学的规律在空间运动。它的运动方式主要有两种:环绕地球运行和飞离地球在行星际空间航行。环绕地球运行轨道是以地球为焦点之一的椭圆轨道或以地心为圆心的圆轨道。
行星际空间航行轨道大多是以太阳为焦点之一的椭圆轨道的一部分。航天器克服地球引力在空间运行,必须获得足够大的初始速度。环绕地球运行的航天器,如人造地球卫星、卫星式载人飞船和空间站等要在预定高度的圆轨道上运行,必须达到这一高度的环绕速度,速度方向与当地水平面平行。在地球表面的环绕速度是7.9千米/秒,称为第一宇宙速度。高度越高,所需的环绕速度越小。无论速度大于或小于环绕速度,或者速度方向不与当地水平面平行,航天器的轨道一般变成一个椭圆,地心是椭圆的焦点之一。若速度过小或速度方向偏差过大,椭圆轨道的近地点可能降低较多,甚至进入稠密大气层,不能实现空间飞行。航天器在空间某预定点脱离地球进入行星际航行必须达到的最小速度叫做脱离速度或逃逸速度。预定点高度不同,脱离速度也不同。在地球表面的脱离速度称为第二宇宙速度。从地球表面发射飞出太阳系的航天器所需的速度称为第三宇宙速度。实现恒星际航行则需要更大的速度。
运动方式
航天器大多不携带飞行动力装置,在极高真空的宇宙空间靠惯性自由飞行。航天器的运动速度为八到十几公里每秒,这个速度是由运载器提供的。航天器的轨道是事先按照航天任务来选择和设计的。有些航天器带有动力装置用以变轨或轨道保持。
运行安全
航天器由运载器发射送入宇宙空间,长期处在高真空、强辐射、失重的环境中,有的还要返回地球或在其他天体上着陆,经历各种复杂环境。航天器工作环境比航空器环境条件恶劣得多,也比火箭和导弹工作环境复杂。发射航天器需要比自身重几十倍到上百倍的运载器,航天器入轨后,需要正常工作几个月、几年甚至十几年。因此,重量轻、体积小、高可靠、长寿命和承受复杂环境条件的能力是
航天器材料、器件和设备的基本要求,也是
航天器设计的基本原则之一。对于载人航天器,可靠性要求更为突出。
控制技术
绝大多数航天器为无人飞行器,各系统的工作要依靠地面遥控或自动控制。航天员对载人航天器各系统的工作能够参与监视和控制,但是仍然要依赖于地面指挥和控制。航天器控制主要是借助地面和航天器上的无线电测控系统配合完成的。航天器工作的安排、监测和控制通常由航天测控和数据采集网或用户台站(网)的中心站的工作人员实施。随着航天器计算机系统功能的增强,航天器自动控制能力在不断提高。
系统技术
航天器的电源不仅要求寿命长,比能量大,而且还要功率大,从几十瓦到几千瓦。它使用的
太阳电池阵电源系统、燃料电池和核电源系统都比较复杂,涉及到半导体和核能等项技术。航天器轨道控制和姿态控制系统不仅采用了很多特有的敏感器、推力器和控制执行机构以及数字计算装置等,而且应用了现代控制论的新方法,形成为多变量的反馈控制系统。
航天器结构、热控制、无线电测控、返回着陆、生命保障等系统以及多种专用系统都采用了许多特殊材料、器件和设备,涉及到众多的科学技术领域。航天器的正常工作不仅决定于航天器上各系统的协调配合,而且还与整个航天系统各部分的协调配合有密切关系。航天器以及更复杂的航天系统的研制和管理,都须依靠系统工程的理论和方法。
展望
随着航天飞机和其他新型航天运输系统的使用,空间组装和检修技术的成熟,人类将在空间建造各种大型的航天系统,例如,直径上千米的大型光学系统、长达几千米的巨型天线阵和永久性空间站等。未来航天器的发展和应用主要集中在三个方面:进一步提高从空间获取信息和传输信息的能力,扩大应用范围;
加速试验在空间环境条件下生产新材料和新产品;探索在空间利用太阳辐射能,提供新能源。从空间获取信息、材料和能源是航天器发展的长远目标。