斯莱特行列式是多电子体系波函数的一种表达方式,他以量子物理学家斯莱特的名字命名。这种形式的波函数可以满足对多电子波函数的反对称要求(即所谓
泡利原理):交换体系中任意两个电子的坐标,则波函数的符号将会反转。在量子化学中,所有基于
分子轨道理论的计算方法都用斯莱特行列式的形式来表示多电子体系的波函数。
斯莱特行列式最原初的形态是一个由单电子波函数即分子轨道波函数构成的
行列式:
其中算子 叫做置换算子,其作用是将各分子
轨道波函数中的电子序号进行交换,根据
排列的原理,在由N个电子组成的体系中,这样的算子一共有N!个。 是置换算子的奇偶性,即任何置换算子可以转化为若干两两对换的置换算子的乘积,所谓奇偶性就是一个置换算子所分解成的对换算子的个数的奇偶性。与上面提到的右矢形式不同,这种由置换算子来表达的形式与行列式表达式在数学上是严格相等的。
斯莱特行列式在量子化学中应用广泛,经过自洽场方法解HF方程获得的最终解便是一个斯莱特行列式型多电子波函数,高级的量子化学计算方法也应用到斯莱特行列式,
组态相互作用方法得到的多电子体系波函数是若干个斯莱特行列式的
线性组合: