数学分析方法
一种决策分析方法
数学分析方法是是一种运用数学方法对可以定量化的决策问题进行研究,解决决策中的数量关系的决策分析方法,产生于第二次世界大战期间。
内容
每一种决策分析方法都有自己的特定内容。数学分析方法的基本内容是数学化、模型化和计算机化。从数学角度看,数学中发现了许多有实用价值的手段,如线性规划、整数规划动态规划、对策论、排队论、存货模型调度模型概率统计等等,对定量化的分析与决断起到了重大的推动作用;从模型化角度看,每一种数学手段都包括了解决决策问题的具体数学模型,人们可以借助于模型找出自己所需了解的问题的答案;从计算机化的角度看,人们可以借用电子计算机这个快速逻辑计算工具,缩短解决问题的时间,增强预测的精确性。这“三化”是互相联系的,它们的结合使决策的技术和方法发生了重大变化。
数学分析法的中心内容是建立与决策与决策目标相适应的、反映事物联系的数学模型。这种模型的核心是运用数学方法,把变量之间以及变量同目标之间的关系用数学关系式表达出来。如果应用电子计算机,则把这些数学模型用计算机的语言编成程序模型,然后把程序模型输入电子计算机,通过计算机的运算,得到准确的数据和结论。目前,许多常用的数学分析法都已编成计算机程序,供决策者随时调用。
应用
在决策时如何运用数学分析法,应视具体情况而定。掌握数量关系是运用数学分析法的前提。如果决策者和有关专家能够把握决策对象的数量关系,运用数学分析法进行预测和决策,就会速度快,效率高,数据准确,结论可靠。
在决策实践中采用哪种数学分析方法,与决策问题的性质和特点有关,其中主要有三个方面的因素:第一,问题本身包含的变量数目;第二,决策环境的不确定程度;第三,时间因素的影响。这三个方面因素的不同,形成了不同类型的决策,需要采用不同数学工具。例如,对于单变量静态确定型决策,一般采用算术、基本代数、微积分中的古典极值原理;对于多变量静态确定型决策,一般采用矩阵代数、线性规划、非线性规划等方法;对于单变量静态概率型决策,应采用概率论基本原理;对于多变量静态概率型决策,应运用多元统计分析;对于单变量动态确定型决策,应采用微分方程;对于多变量动态确定型决策,应采用动态规划、自动控制论;对于单变量动态概率型决策,应采用存货理论、排队论、马尔科夫方程;对于多变量动态概率性决策,应采用复杂的随机过程论;等等。
常用数学分析方法
1.线性规划;
2.盈亏平衡分析;
4.收益矩阵决策;
5.排队模型;
6.其他几种方法。
(1)等可能法;
(2)大中取大法(乐观法);
(3)小中取大法(悲观法);
(4)乐观系数法;
(5)沙凡奇(Savage)法(后悔值大中取小法)。
优缺点
优点
数学分析方法之所以在管理决策中得到广泛的应用,是由其优点所决定的。主要表现为:在特定的条件下,数学分析方法可以使决策工作建立在科学的基础之上;数学分析法可以使复杂的数学程序变得简单明了,有利于提高决策效率;在有关的网络系统中,借助于数学分析方法,能帮助管理者解决复杂的问题;线性规划和决策树等方法都有利于制定一系列活动的步骤,便于了解各种活动之间的关系,从而实现科学的决策;好的数学模型图解,有助于决策者对各种因果关系一目了然,并纠正决策者对某些问题的偏见;等等。
缺点
数学分析方法并不是十全十美的,它也有适用上的局限性,主要表现为:
1.数学模型本身不一定能很好地反映现实中的有关问题,因为许多数学模型都是建立在不一定正确的假设基础之上的,而且,在现实生活中,并不是所有的问题都能用数字来表达。因此,数学分析方法并不适用于所有决策问题或某一决策问题的所有方面。
2.若过分依赖数学模型来进行决策活动,就要专门培养一批从事数学模型设计和应用的人才,而这些专门人才却难以在其他方面发挥作用。
参考资料
最新修订时间:2021-12-04 13:03
目录
概述
内容
参考资料