《数值计算方法》是2010年7月13日科学出版社出版的一本
图书,作者是
黄云清。
内容简介
随着计算机和计算方法的飞速发展,几乎所有学科都走向定量化和精确化,从而产生了一系列计算性的学科分支,如计算物理、计算化学、
计算生物学、计算地质学、计算气象学和计算材料学等,计算数学中的数值计算方法则是解决“计算”问题的桥梁和工具。我们知道,计算能力是计算工具和计算方法的效率的乘积,提高计算方法的效率与提高计算机硬件的效率同样重要。科学计算已用到科学技术和社会生活的各个领域中。
数值计算方法是微分方程,常微分方程,线性方程组的求解。
数值计算方法,是一种研究并解决数学问题的数值近似解方法, 是在计算机上使用的解数学问题的方法,简称计算方法。
在科学研究和工程技术中都要用到各种计算方法。 例如,在航天航空、地质勘探、汽车制造、桥梁设计、 天气预报和汉字字样设计中都有计算方法的踪影。
计算方法既有数学类课程中理论上的抽象性和严谨性,又有实用性和实验性的技术特征, 计算方法是一门理论性和实践性都很强的学科。 在70年代,大多数学校仅在数学系的计算数学专业和计算机系开设计算方法这门课程。 随着计算机技术的迅速发展和普及, 现在计算方法课程几乎已成为所有理工科学生的必修课程。
计算方法的计算对象是
微积分,
线性代数,常微分方程中的数学问题。 内容包括:插值和拟合、数值微分和数值积分、求解线性方程组的直接法和迭代法、 计算
矩阵特征值和特征向量和
常微分方程数值解等问题。
简介
数值分析的目的是设计及分析一些计算的方式,可针对一些问题得到近似但够精确的结果。以下是一些会用利用数值分析处理的问题:
数值天气预报中会用到许多先进的数值分析方。计算太空船的轨迹需要求出
常微分方程的数值解。汽车公司会利用电脑模拟汽车撞击来提升汽车受到撞击时的安全性。电脑的模拟会需要求出偏微分方程的数值解。
对冲基金会利用各种数值分析的工具来计算股票的市值及其变异程度。航空公司会利用复杂的最佳化算法决定票价、飞机、人员分配及用油量。此领域也称为
作业研究。保险公司会利用数值软件进行
精算分析。计算太空船的轨迹需要求出常微分方程的数值解。
直接迭代
直接法利用固定次数的步骤求出问题的解。这些方式包括求解
线性方程组的
高斯消去法及QR算法(英语:QR algorithm),求解线性规划的
单纯形法等。若利用无限精度算术的计算方式,有些问题可以得到其精确的解。不过有些问题不存在
解析解(如
五次方程),也就无法用直接法求解。在电脑中会使用
浮点数进行运算,在假设运算方式稳定的前提下,所求得的结果可以视为是精确解的近似值。
迭代法是通过从一个初始估计出发寻找一系列
近似解来解决问题的数学过程。和直接法不同,用迭代法求解问题时,其步骤没有固定的次数,而且只能求得问题的近似解,所找到的一系列近似解会
收敛到问题的精确解。会利用审敛法来判别所得到的近似解是否会收敛。一般而言,即使使用无限精度算术的计算方式,迭代法也无法在有限次数内得到问题的精确解。
在数值分析中用到迭代法的情形会比直接法要多。例如像
牛顿法、二分法、
雅可比法、广义最小残量方法(GMRES)及
共轭梯度法等。在计算矩阵代数中,大型的问题一般会需要用迭代法来求解。
离散化
许多时候需要将连续模型的问题转换为一个离散形式的问题,而离散形式的解可以近似原来的连续模型的解,此转换过程称为
离散化。例如求一个函数的积分是一个连续模型的问题,也就是求一曲线以下的面积若将其离散化变成
数值积分,就变成将上述面积用许多较简单的形状(如长方形、梯形)近似,因此只要求出这些形状的面积再相加即可。
例如在二小时的赛车比赛中,记录了三个不同时间点的赛车速度,如下表:
利用离散化的方式,可以假设赛车在0:00到0:40之间的速度、0:40到1:20之间的速度及1:20到2:00之间的速度分别为三个定值,因此前40分钟的总位移可近似为(2/3h × 140 km/h) = 93.3 公里。可依此方式近似二小时内的总位移为93.3 公里 + 100 公里 + 120 公里 = 313.3 公里。位移是速度的积分,而上述的作法是用
黎曼和(英语:Riemann sum)进行数值积分的一个例子。
图书目录
第1章 引论
第2章 函数基本逼近(一)——插值逼近
第3章 函数基本逼近(二)——最佳逼近
第4章 数值积分与数值微分
第5章 线性代数方程组求解
第6章 矩阵特征值问题的解法
第7章 非线性方程的数值解法
第8章 常微分方程数值解法
第9章 Monte Carlo方法简介
第10章 最优化方法
第11章 多层网格法
参考文献