振弦式传感器(vibrating wire transducer)是以拉紧的金属弦作为敏感元件的
谐振式传感器。当弦的长度确定之后,其
固有振动频率的变化量即可表征弦所受拉力的大小,通过相应的测量电路,就可得到与拉力成一定关系的电信号。
振弦的
固有振动频率f与拉力T的关系为,式中l为振弦的长度,ρ为单位弦长的质量。振弦的材料与质量直接影响传感器的精度、灵敏度和稳定性。钨丝的性能稳定、硬度、熔点和抗拉强度都很高,是常用的振弦材料。此外,还可用提琴弦、高强度钢丝、钛丝等作为振弦材料。振弦式传感器由振弦、磁铁、夹紧装置和受力机构组成。振弦一端固定、一端连接在受力机构上。利用不同的受力机构可做成测压力、扭矩或加速度等的各种振弦式传感器。
早期的
压力传感器即采用振弦式。这种传感器的振弦一端固定,另一端连结在弹性感压膜片上。弦的中部装有一块软铁,置于磁铁和线圈构成的激励器的磁场中(图1)。激励器在停止激励时兼作拾振器,或单设拾振器。工作时,振弦在激励器的激励下振动,其振动频率与膜片所受压力的大小有关。拾振器则通过电磁感应获取振动频率信号。振弦振动的激励方式有间歇式和连续式两种。在间歇激励方式中,采用张弛振荡器给出激励脉冲,并通过一个继电器使线圈通电、磁铁吸住弦上的软铁块。激励脉冲停止后,磁铁被松开,使振弦自由振动。此时在线圈中即产生感应电势,其交变频率即为振弦的固有振动频率。连续激励方式又可分为电流法和电磁法。电流法将振弦作为等效的LC回路并联于振荡电路中,使电路以振弦的固有频率振荡。电磁法采用两个装有线圈的磁铁,分别作为激励线圈和拾振线圈。拾振线圈的感应信号被放大后又送至激励线圈去补充振动的能量。为减小传感器非线性对测量精度的
影响,需要选择适中的最佳工作频段和设置预应力,或采用在感压膜的两侧各设一根振弦的差动式结构。
振弦式
转矩传感器 这种传感器可用于测量发动机轴的扭矩。测量时将整个装置用两个套筒卡在被测轴的两个相邻面上(图2)。两个
振弦传感器分别跨接在两个套筒的 4个凸柱上。当轴传递扭矩时,轴产生扭转形变,轴的两相邻截面就扭转一个角度,使装在卡筒上的两个振弦传感器中的一个受拉、一个受压。根据虎克定律,在弹性变形范围内,轴的扭转角度是与外加的扭矩成正比的,振弦的伸缩变形也就与外加的扭矩成正比。而振弦的振动频率的平方差与它所受应力成正比,因此可利用测量弦的振动频率的方法来测量轴所承受的扭矩。