拓扑绝缘体
拓扑材料
拓扑绝缘体是一种内部绝缘,界面允许电荷移动的材料。
定义
时间反演拓扑绝缘体,简称拓扑绝缘体,为拥有被ℤ2时间反演对称性与U(1)对称性(电荷守恒)保护的导电边缘态的材料。
纤维丛性质
拓扑绝缘体的电子能带结构定义了动量空间上的向量丛,称为布洛赫丛。该布洛赫丛有自然的埃尔米特度量,故为偶数阶希尔伯特丛,即每根纤维均为内积空间
拓扑不变量
由于时间反演对称性的存在,拓扑绝缘体可由取值于ℤ2的不变量来分类,称为ℤ2不变量。
ℤ2不变量的物理意义为未配对的马约拉纳零模的存在性,即交叉的边缘态形成的锥形奇点。
ℤ2不变量可视为动量空间上的普法夫线丛的斯蒂弗尔-惠特尼类
简介
按照导电性质的不同,材料可分为“导体”和“绝缘体”两大类;而更进一步,根据电子态的拓扑性质的不同,“绝缘体”和“导体”还可以进行更细致的划分。拓扑绝缘体就是根据这样的新标准而划分的区别于其他普通绝缘体的一类绝缘体。拓扑绝缘体的体内与人们通常认识的绝缘体一样,是绝缘的,但是在它的边界或表面总是存在导电的边缘态,这是它有别于普通绝缘体的最独特的性质。这样的导电边缘态在保证一定对称性(比如时间反演对称性)的前提下是稳定存在的,而且不同自旋的导电电子的运动方向是相反的,所以信息的传递可以通过电子的自旋,而不像传统材料通过电荷来传递。
特性
拓扑绝缘体是一种具有新奇量子特性的物质状态,物理学的重要科学前沿之一。根据能带理论,传统上固体材料可以按照其导电性质分为绝缘体、导体和半金属,其中绝缘体材料在其费米能处存在着有限大小的能隙,因而没有自由载流子;金属材料在费米能级处存在着有限的电子态密度,进而拥有自由载流子;半导体材料在费米能处没有能隙,但是费米能级处的电子态密度仍然为零。而拓扑绝缘体是一类非常特殊的绝缘体,从理论上分析,这类材料的体内的能带结构是典型的绝缘体类型,在费米能处存在着能隙,然而在该类材料的表面则总是存在着穿越能隙的狄拉克型的电子态,因而导致其表面总是金属性的。拓扑绝缘体这一特殊的电子结构,是由其能带结构的特殊拓扑性质所决定的。
研究现状
拓扑绝缘体研究现状:
第一代, 碲化汞(HgTe)量子阱
第二代, BiSb 合金
第三代, Bi2Se3, Sb2Te3, Bi2Te3 等化合物
从理论上说,拓扑绝缘体是由电荷的U(1)对称性以及时间反演对称性共同保护的拓扑态。只要U(1)对称性和时间反演对称性同时存在,拓扑绝缘体的边缘态就一定是非平庸的,并且,这样的边缘态绝对不能在有同样对称性的低维度系统中实现。在理论上人们已经意识到,其他的对称性同样可以保护类似的拓扑绝缘体(或者拓扑超导体,取决于对称性中是否包括电荷的U(1)对称性)。并且,从2009年以来,人们已经对没有相互作用的费米子系统的所有拓扑绝缘体或者拓扑超导体进行了成功分类。2011年以来,拓扑绝缘体的概念已经被拓展成为一个更为宽泛的概念:对称保护拓扑态(Symmetry Protected Topological States)。凝聚态理论物理学界已经对各个维度的玻色子系统中的对称保护拓扑态进行了较为完整的分类。但是对于所有维度的有强相互作用的费米子系统中对称保护拓扑态的分类还没有最后完成。
从现象上说,拓扑绝缘体有其他绝缘体所不具备的特殊性质。比如,根据理论预测,三维拓扑绝缘体与超导体的界面上的vortex core中将会形成零能majorana 费米子,这一特点有可能实现拓扑量子计算。
2023年,荷兰科学家研制出了首个由单元素组成的二维(2D)拓扑绝缘体锗烯,其仅由锗原子组成,还具有在“开”和“关”状态之间切换的独特能力。
2023年,德国首次在拓扑绝缘体中制造出激子,为新一代光控电脑芯片和量子技术奠定了基础。
最新修订时间:2024-01-09 15:14
目录
概述
定义
纤维丛性质
拓扑不变量
简介
参考资料