恒等变形(identical deformation)是
解析式的一种变换,把一个
代数式变成另一个与它恒等的代数式,叫做恒等变形,或恒等变换。例如:由代数式4x2y+3x2y变成7x2y是恒等变形。
1.若以x1,x2,…,xn为变数字母的解析式f(x1,x2,…,xn)与g(x1,x2,…,xn)有相同的定义域D,且在D上等值,则f(x1,x2,…,xn)与g(x1,x2,…,xn)在D上的相互替换,称为恒等变形。例如在实数集R上,解析式(x+y)2与x2+2xy+y2可以互相替换.
2.若以x1,x2,…,xn为变数字母的解析式f(x1,x2,…,xn)与g(x1,x2,…,xn)的定义域分别为D1与D2,且D1≠D2,但在D1∩D2=D≠∅上两解析式等值,则在D上f(x1,x2,…,xn)与g(x1,x2,…,xn)的相互替换亦称为恒等变形。例如e(ln x)/3与的定义域分别是D1=R+,D2=R,则在D1∩D2=R+上,解析式e(ln x)/3与的相互替换就是这种意义下的恒等变形。